An Effective Algorithmic Framework for Near Optimal Multi-robot Path Planning

We present a centralized algorithmic framework for solving multi-robot path planning problems in general, two-dimensional, continuous environments while minimizing globally the task completion time. The framework obtains high levels of effectiveness through the composition of an optimal discretization of the continuous environment and the subsequent fast, near-optimal resolution of the resulting discrete planning problem. This principled approach achieves orders of magnitudes better performance with respect to both speed and the supported robot density. For a wide variety of environments, our method is shown to compute globally near-optimal solutions for 50 robots in seconds with robots packed close to each other. In the extreme, the method can consistently solve problems with hundreds of robots that occupy over 30% of the free space.

[1]  Paul G. Spirakis,et al.  Coordinating Pebble Motion on Graphs, the Diameter of Permutation Groups, and Applications , 2015, FOCS.

[2]  Steven M. LaValle,et al.  Planning optimal paths for multiple robots on graphs , 2012, 2013 IEEE International Conference on Robotics and Automation.

[3]  G. Beni,et al.  A Torque-Sensitive Tactile Array for Robotics , 1983 .

[4]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[5]  Mark H. Overmars,et al.  Prioritized motion planning for multiple robots , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Richard M. Wilson,et al.  Graph puzzles, homotopy, and the alternating group☆ , 1974 .

[7]  Daniela Rus,et al.  Pebble Motion on Graphs with Rotations: Efficient Feasibility Tests and Planning Algorithms , 2012, WAFR.

[8]  Srinivas Akella,et al.  Coordinating Multiple Droplets in Planar Array Digital Microfluidic Systems , 2005, Int. J. Robotics Res..

[9]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[10]  Dinesh Manocha,et al.  Smooth and collision-free navigation for multiple mobile robots and video game characters , 2012 .

[11]  Dan Halperin,et al.  k-color multi-robot motion planning , 2012, Int. J. Robotics Res..

[12]  Anil Maheshwari,et al.  Characterizing and Recognizing Weak Visibility Polygons , 1993, Comput. Geom..

[13]  Dinesh Manocha,et al.  Centralized path planning for multiple robots: Optimal decoupling into sequential plans , 2009, Robotics: Science and Systems.

[14]  Roland Geraerts,et al.  Space-Time Group Motion Planning , 2012, WAFR.

[15]  Tomás Lozano-Pérez,et al.  Deadlock-free and collision-free coordination of two robot manipulators , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[16]  Stephen J. Buckley,et al.  Fast motion planning for multiple moving robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[17]  Ross A. Knepper,et al.  Pedestrian-inspired sampling-based multi-robot collision avoidance , 2012, 2012 IEEE RO-MAN: The 21st IEEE International Symposium on Robot and Human Interactive Communication.

[18]  Richard E. Korf,et al.  Complete Algorithms for Cooperative Pathfinding Problems , 2011, IJCAI.

[19]  Javier Alonso-Mora,et al.  Collaborative motion planning for multi-agent systems , 2014 .

[20]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[21]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[22]  R. J. Schilling,et al.  Decoupling of a Two-Axis Robotic Manipulator Using Nonlinear State Feedback: A Case Study , 1984 .

[23]  J. Schwartz,et al.  On the Piano Movers' Problem: III. Coordinating the Motion of Several Independent Bodies: The Special Case of Circular Bodies Moving Amidst Polygonal Barriers , 1983 .

[24]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[25]  John McPhee,et al.  A Complete and Scalable Strategy for Coordinating Multiple Robots Within Roadmaps , 2008, IEEE Transactions on Robotics.

[26]  Vijay Kumar,et al.  Concurrent assignment and planning of trajectories for large teams of interchangeable robots , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  Steven M. LaValle,et al.  Fast, Near-Optimal Computation for Multi-Robot Path Planning on Graphs , 2013, AAAI.

[28]  Howie Choset,et al.  M*: A complete multirobot path planning algorithm with performance bounds , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[29]  Mark H. Overmars,et al.  Coordinated path planning for multiple robots , 1998, Robotics Auton. Syst..

[30]  Jihong Lee,et al.  A minimum-time trajectory planning method for two robots , 1992, IEEE Trans. Robotics Autom..

[31]  Steven M. LaValle,et al.  Optimal motion planning for multiple robots having independent goals , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[32]  Pierre Alliez,et al.  Computational geometry algorithms library , 2008, SIGGRAPH '08.

[33]  Raffaello D'Andrea,et al.  Coordinating Hundreds of Cooperative, Autonomous Vehicles in Warehouses , 2007, AI Mag..

[34]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[35]  Dan Halperin,et al.  Motion Planning for Unlabeled Discs with Optimality Guarantees , 2015, Robotics: Science and Systems.

[36]  Steven M. LaValle,et al.  Structure and Intractability of Optimal Multi-Robot Path Planning on Graphs , 2013, AAAI.

[37]  Dinesh Manocha,et al.  Reciprocal collision avoidance with acceleration-velocity obstacles , 2011, 2011 IEEE International Conference on Robotics and Automation.

[38]  Malcolm Ross Kinsella Ryan Exploiting Subgraph Structure in Multi-Robot Path Planning , 2008, J. Artif. Intell. Res..

[39]  Robert Jan. Williams,et al.  The Geometrical Foundation of Natural Structure: A Source Book of Design , 1979 .

[40]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[41]  Srinivas Akella,et al.  Coordinating Multiple Robots with Kinodynamic Constraints Along Specified Paths , 2005, Int. J. Robotics Res..

[42]  Jason M. O'Kane,et al.  Computing Pareto Optimal Coordinations on Roadmaps , 2005, Int. J. Robotics Res..

[43]  Tomás Lozano-Pérez,et al.  An algorithm for planning collision-free paths among polyhedral obstacles , 1979, CACM.

[44]  Kostas E. Bekris,et al.  Towards Using Discrete Multiagent Pathfinding to Address Continuous Problems , 2012, MAPF@AAAI.

[45]  J. T. Shwartz,et al.  On the Piano Movers' Problem : III , 1983 .

[46]  Dinesh Manocha,et al.  Smooth Coordination and Navigation for Multiple Differential-Drive Robots , 2010, ISER.