Diffusion control for a tempered anomalous diffusion system using fractional-order PI controllers.

This paper is concerned with diffusion control problem of a tempered anomalous diffusion system based on fractional-order PI controllers. The contribution of this paper is to introduce fractional-order PI controllers into the tempered anomalous diffusion system for mobile actuators motion and spraying control. For the proposed control force, convergence analysis of the system described by mobile actuator dynamical equations is presented based on Lyapunov stability arguments. Moreover, a new Centroidal Voronoi Tessellation (CVT) algorithm based on fractional-order PI controllers, henceforth called FOPI-based CVT algorithm, is provided together with a modified simulation platform called Fractional-Order Diffusion Mobile Actuator-Sensor 2-Dimension Fractional-Order Proportional Integral (FO-Diff-MAS2D-FOPI). Finally, extensive numerical simulations for the tempered anomalous diffusion process are presented to verify the effectiveness of our proposed fractional-order PI controllers.

[1]  YangQuan Chen,et al.  Remote Sensing and Actuation Using Unmanned Vehicles , 2012 .

[2]  Serdar Ethem Hamamci Stabilization using fractional-order PI and PID controllers , 2007 .

[3]  O. Marichev,et al.  Fractional Integrals and Derivatives: Theory and Applications , 1993 .

[4]  Mark M. Meerschaert,et al.  Tempered fractional time series model for turbulence in geophysical flows , 2014 .

[5]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[6]  Yangquan Chen,et al.  Robust stability check of fractional order linear time invariant systems with interval uncertainties , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[7]  YangQuan Chen,et al.  Optimal Dynamic Actuator Location in Distributed Feedback Control of A Diffusion Process , 2005, CDC 2005.

[8]  Mehmet Önder Efe ADALINE based robust control in robotics: a Riemann-Liouville fractional differintegration based learning scheme , 2009, Soft Comput..

[9]  YangQuan Chen,et al.  Optimal control of a diffusion process using networked unmanned aerial systems with smart health , 2014 .

[10]  Yangquan Chen,et al.  Computers and Mathematics with Applications Stability of Fractional-order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag–leffler Stability , 2022 .

[11]  M. Yor,et al.  Stochastic Volatility for Lévy Processes , 2003 .

[12]  Mark A. J. Chaplain,et al.  Robust numerical methods for taxis-diffusion-reaction systems: Applications to biomedical problems , 2006, Math. Comput. Model..

[13]  Mark M. Meerschaert,et al.  Tempered fractional calculus , 2015, J. Comput. Phys..

[14]  W. Deng,et al.  Well-posedness and numerical algorithm for the tempered fractional differential equations , 2019, Discrete & Continuous Dynamical Systems - B.

[15]  YangQuan Chen,et al.  UBIQUITOUS FRACTIONAL ORDER CONTROLS , 2006 .

[16]  Sonia Martínez,et al.  Coverage control for mobile sensing networks , 2002, IEEE Transactions on Robotics and Automation.

[17]  I. Podlubny Fractional differential equations : an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications , 1999 .

[18]  Kevin L. Moore,et al.  Diffusion boundary determination and zone control via mobile actuator-sensor networks (MAS-net): challenges and opportunities , 2004, SPIE Defense + Commercial Sensing.

[19]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[20]  A. Schaft L2-Gain and Passivity Techniques in Nonlinear Control. Lecture Notes in Control and Information Sciences 218 , 1996 .

[21]  K. Khanafer,et al.  Water diffusion in biomedical systems as related to magnetic resonance imaging. , 2003, Magnetic resonance imaging.

[22]  W. Deng,et al.  Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations , 2015, 1501.00376.

[23]  Gaurav S. Sukhatme,et al.  Mobile Sensor Network Deployment using Potential Fields : A Distributed , Scalable Solution to the Area Coverage Problem , 2002 .

[24]  Yangquan Chen,et al.  Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality , 2007, Appl. Math. Comput..

[25]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[26]  Diana Bohm,et al.  L2 Gain And Passivity Techniques In Nonlinear Control , 2016 .

[27]  Ivo Petras,et al.  Stability of Fractional-Order Systems , 2011 .

[28]  Mark M. Meerschaert,et al.  Tempered stable Lévy motion and transient super-diffusion , 2010, J. Comput. Appl. Math..

[29]  Y. Chen,et al.  Robust Position Control of PMSM Using Fractional-Order Sliding Mode Controller , 2012 .

[30]  Qiang Du,et al.  Probabilistic methods for centroidal Voronoi tessellations and their parallel implementations , 2002, Parallel Comput..

[31]  Marcin Magdziarz,et al.  Fractional Fokker-Planck equation with tempered α-stable waiting times: langevin picture and computer simulation. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Yangquan Chen,et al.  Multi-UAV-based optimal crop-dusting of anomalously diffusing infestation of crops , 2015, 2015 American Control Conference (ACC).

[33]  M. Meerschaert,et al.  Tempered anomalous diffusion in heterogeneous systems , 2008 .