Machine Learning Control – Taming Nonlinear Dynamics and Turbulence

There are none." John Doyle, IEEE Transactions on Automatic Control, 1978 [86] The most well-developed theory of control generally applies to a linear system or to the linearization of a nonlinear system about a fixed point or a periodic orbit. Linear control theory has many applications in fluid dynamics, such as the stabilization of unstable laminar boundary layers. Although the governing equations may be nonlinear, successful stabilizing controllers will regulate the system to a neighborhood where the linearization is increasingly valid. In this chapter we introduce linear systems (Sec. 3.1) and explore H2 optimal control problems, including the linear quadratic regulator (LQR) in Sec. 3.2 and Kalman filters in Sec. 3.3. These problems are chosen because of their simplicity, ubiquitous application, well-defined quadratic cost-functions, and the existence of known optimal solutions. Next, linear quadratic Gaussian (LQG) control is introduced for sensor-based feedback in Sec. 3.4. Finally, methods of system linear system identification are provided in Sec. 3.5. This chapter is not meant to be an exhaustive primer on linear control theory, although key concepts from optimal control are introduced as needed to build intuition. Note that none of the linear system theory below is required to implement the machine learning control strategies in the remainder of the book, but they are instead included to provide context and demonstrate known optimal solutions to linear control problems. In many situations, H∞ robust control may be more desirable to balance the trade-off between robustness and performance in systems with uncertainty and unmodeled dynamics, and the MLC methods developed here may be generalized to other cost functions. For a more complete discussion of linear control theory, excellent books include [93, 251].

[1]  B. R. Noack,et al.  A hierarchy of low-dimensional models for the transient and post-transient cylinder wake , 2003, Journal of Fluid Mechanics.

[2]  Jean-Luc Aider,et al.  Flow control using MEMS pulsed micro-jets on the Ahmed body , 2013 .

[3]  Diogo Camello Barros Wake and Drag Manipulation of a Bluff Body Using Fluidic Forcing , 2015 .

[4]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[5]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[6]  Parviz Moin,et al.  Active turbulence control for drag reduction in wall-bounded flows , 1994, Journal of Fluid Mechanics.

[7]  H. Sung,et al.  Control of turbulent separated flow over a backward-facing step by local forcing , 1996 .

[8]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[9]  P. Ioannou,et al.  State Estimation Using a Reduced-Order Kalman Filter , 2001 .

[10]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[11]  J. Lumley,et al.  A First Course in Turbulence , 1972 .

[12]  Khairul Q. Zaman,et al.  Turbulence suppression in free shear flows by controlled excitation , 1981, Journal of Fluid Mechanics.

[13]  Bernd R. Noack,et al.  Control of a three-dimensional blunt body wake using low and high frequency pulsed jets , 2014 .

[14]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[15]  B. R. Noack,et al.  On the need for a nonlinear subscale turbulence term in POD models as exemplified for a high-Reynolds-number flow over an Ahmed body , 2013, Journal of Fluid Mechanics.

[16]  Steven L. Brunton,et al.  Compressive sampling and dynamic mode decomposition , 2013, 1312.5186.

[17]  Bassam Bamieh,et al.  Identification of linear parameter varying models , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[18]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[19]  Avi Seifert,et al.  Effects of Sweep on Active Separation Control at High Reynolds Numbers , 2003 .

[20]  Trent McConaghy,et al.  FFX: Fast, Scalable, Deterministic Symbolic Regression Technology , 2011 .

[21]  B. R. Noack,et al.  Feedback shear layer control for bluff body drag reduction , 2008, Journal of Fluid Mechanics.

[22]  Dimitris C. Dracopoulos,et al.  Evolutionary Learning Algorithms for Neural Adaptive Control , 1997, Perspectives in Neural Computing.

[23]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[24]  Haecheon Choi,et al.  CONTROL OF FLOW OVER A BLUFF BODY , 2008, Proceeding of Fifth International Symposium on Turbulence and Shear Flow Phenomena.

[25]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[26]  Clarence W. Rowley,et al.  An improved algorithm for balanced POD through an analytic treatment of impulse response tails , 2012, J. Comput. Phys..

[27]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[28]  L. Cordier,et al.  Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model , 2005 .

[29]  T. Schneider,et al.  A Linear Systems Approach to Flow Control , 2007 .

[30]  Robert King,et al.  Model-based Control of Vortex Shedding Using Low-dimensional Galerkin Models , 2003 .

[31]  Robert King,et al.  Multivariable closed-loop flow control of drag and yaw moment for a 3D bluff body , 2012 .

[32]  Christopher Baker Ground vehicles in high cross winds part III: The interaction of aerodynamic forces and the vehicle system , 1991 .

[33]  Bernhard Schölkopf,et al.  A tutorial on support vector regression , 2004, Stat. Comput..

[34]  Bartosz Protas,et al.  Linear feedback stabilization of laminar vortex shedding based on a point vortex model , 2004 .

[35]  Roger L. Simpson,et al.  Turbulent Boundary-Layer Separation , 1989 .

[36]  Chih-Ming Ho,et al.  Perturbed Free Shear Layers , 1984 .

[37]  Jose Flich,et al.  Flow Control , 2011, Encyclopedia of Parallel Computing.

[38]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 2014 .

[39]  Mark N. Glauser,et al.  Simulation-Guided, Model-Based Feedback Flow Control for a Pitching Turret , 2012 .

[40]  G. P. King,et al.  Topological dimension and local coordinates from time series data , 1987 .

[41]  Kevin R. Cooper Truck Aerodynamics Reborn - Lessons from the Past , 2003 .

[42]  E. de Villiers,et al.  Application of Detached-Eddy Simulation for Automotive Aerodynamics Development , 2009 .

[43]  Lars Henning,et al.  Robust Multivariable Closed-Loop Control of a Turbulent Backward-Facing Step Flow , 2007 .

[44]  I. Mezić,et al.  Analysis of Fluid Flows via Spectral Properties of the Koopman Operator , 2013 .

[45]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[46]  Steven L. Brunton,et al.  Compressed Dynamic Mode Decomposition for Real-Time Object Detection , 2015, ArXiv.

[47]  Wilson J. Rugh,et al.  Research on gain scheduling , 2000, Autom..

[48]  Karen Willcox,et al.  A Survey of Projection-Based Model Reduction Methods for Parametric Dynamical Systems , 2015, SIAM Rev..

[49]  Jean-François Beaudoin,et al.  Three-dimensional stationary flow over a backward-facing step , 2004 .

[50]  Clarence W. Rowley,et al.  Reduced-order models for control of fluids using the eigensystem realization algorithm , 2008, 0907.1907.

[51]  Christopher J. Roy,et al.  DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design , 2004 .

[52]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[53]  Clarence W. Rowley,et al.  Feedback control of flow resonances using balanced reduced-order models , 2011 .

[54]  Peter J. Fleming,et al.  Evolutionary algorithms in control systems engineering: a survey , 2002 .

[55]  Lawrence Sirovich,et al.  Karhunen–Loève procedure for gappy data , 1995 .

[56]  莊哲男 Applied System Identification , 1994 .

[57]  L. Davidson,et al.  Computations and Full-Scale Tests of Active Flow Control Applied on a VOLVO Truck-Trailer , 2010 .

[58]  Jason L. Speyer,et al.  Robust reduced-order controller of laminar boundary layer transitions , 1998 .

[59]  Robert King,et al.  Robust nonlinear control versus linear model predictive control of a bluff body wake , 2010 .

[60]  J. Carberrya,et al.  Controlled oscillations of a cylinder : a new wake state , 2003 .

[61]  M. Hasan The flow over a backward-facing step under controlled perturbation: laminar separation , 1992, Journal of Fluid Mechanics.

[62]  B. O. Koopman,et al.  Dynamical Systems of Continuous Spectra. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[63]  Jason L. Speyer,et al.  Skin-friction Drag Reduction Via Robust Reduced-order Linear Feedback Control , 1998 .

[64]  Simon D. Kent,et al.  Genetic programming for prediction and control , 1997, Neural Computing & Applications.

[65]  Louis N. Cattafesta,et al.  Actuators for Active Flow Control , 2011 .

[66]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[67]  H. M. B L A C K B U R N,et al.  A study of two-dimensional flow past an oscillating cylinder , 2022 .

[68]  Serpil Kocabiyik,et al.  The flow induced by a rotationally oscillating and translating circular cylinder , 2000, Journal of Fluid Mechanics.

[69]  Michel Visonneau,et al.  Cross wind effects on a simplified car model by a DES approach , 2013 .

[70]  V. Theofilis Global Linear Instability , 2011 .

[71]  A. Visioli Tuning of PID controllers with fuzzy logic , 2001 .

[72]  D. Henningson,et al.  Input–output analysis, model reduction and control of the flat-plate boundary layer , 2009, Journal of Fluid Mechanics.

[73]  Max D. Gunzburger,et al.  Centroidal Voronoi Tessellation-Based Reduced-Order Modeling of Complex Systems , 2006, SIAM J. Sci. Comput..

[74]  P. J. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[75]  Michel Stanislas,et al.  Open and closed-loop experiments to identify the separated flow dynamics of a thick turbulent boundary layer , 2013 .

[76]  J. Lumley,et al.  CONTROL OF TURBULENCE , 1998 .

[77]  Mark N. Glauser,et al.  Model-Based Feedback Flow Control Development and Simulation for a Pitching Turret , 2012 .

[78]  Frank Thiele,et al.  Turbulence Control Based on Reduced-Order Models and Nonlinear Control Design , 2010 .

[79]  Dan S. Henningson,et al.  Transition delay in a boundary layer flow using active control , 2013, Journal of Fluid Mechanics.

[80]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[81]  P. Sagaut,et al.  Numerical simulation of active separation control by a synthetic jet , 2007, Journal of Fluid Mechanics.

[82]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[83]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[84]  Leonard A. Smith,et al.  Monte Carlo SSA: Detecting irregular oscillations in the Presence of Colored Noise , 1996 .

[85]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[86]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[87]  D. S. Henningson,et al.  Transition delay using control theory , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[88]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[89]  John R. Koza,et al.  Genetic Programming as a Darwinian Invention Machine , 1999, EuroGP.

[90]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[91]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[92]  Roger Temam,et al.  Optimal and Robust Control of Fluid Flows: Some Theoretical and Computational Aspects , 2008 .

[93]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[94]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[95]  Marco Debiasi,et al.  Reduced-Order Model-Based Feedback Control of Subsonic Cavity Flows — An Experimental Approach , 2007 .

[96]  K. Kunisch,et al.  Instantaneous control of backward-facing step flows , 1999 .

[97]  Erkki Oja,et al.  Principal components, minor components, and linear neural networks , 1992, Neural Networks.

[98]  Kamran Shafi,et al.  Prediction of dynamical systems by symbolic regression. , 2016, Physical review. E.

[99]  Louis N. Cattafesta,et al.  Numerical Study of Resonant Interactions and Flow Control in a Canonical Separated Flow , 2005 .

[100]  D. Rempfer On Boundary Conditions for Incompressible Navier-Stokes Problems , 2006 .

[101]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[102]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[103]  Gilead Tadmor,et al.  Reduced-Order Modelling for Flow Control , 2013 .

[104]  H. Nyquist,et al.  Certain Topics in Telegraph Transmission Theory , 1928, Transactions of the American Institute of Electrical Engineers.

[105]  N. N. Bogoli︠u︡bov,et al.  Introduction to non-linear mechanics , 1943 .

[106]  Jacques Periaux,et al.  Multi-input genetic algorithm for experimental optimization of the reattachment downstream of a backward-facing step with surface plasma actuator , 2015 .

[107]  J. Nathan Kutz,et al.  Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video , 2014, ArXiv.

[108]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[109]  John Kim,et al.  Control of turbulent boundary layers , 2003 .

[110]  Bernd R. Noack,et al.  Cluster-based reduced-order modelling of a mixing layer , 2013, Journal of Fluid Mechanics.

[111]  Erkki Oja,et al.  The nonlinear PCA learning rule in independent component analysis , 1997, Neurocomputing.

[112]  N. Gautier,et al.  Flow control using optical sensors , 2014 .

[113]  P. Meliga,et al.  Dynamics and Control of Global Instabilities in Open-Flows: A Linearized Approach , 2010 .

[114]  Robert King,et al.  Linear parameter-varying active flow control for a 3D bluff body exposed to cross-wind gusts , 2014 .

[115]  Heni Ben Amor,et al.  Estimation of perturbations in robotic behavior using dynamic mode decomposition , 2015, Adv. Robotics.

[116]  B. R. Noack Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 2013 .

[117]  Donald Rockwell,et al.  Streamwise oscillations of a cylinder in a steady current. Part 1. Locked-on states of vortex formation and loading , 2001, Journal of Fluid Mechanics.

[118]  Jeff Howell,et al.  Transient Aerodynamic Characteristics of Simple Vehicle Shapes by the Measurement of Surface Pressures , 2000 .

[119]  Robert J. Englar,et al.  Pneumatic Heavy Vehicle Aerodynamic Drag Reduction, Safety Enhancement, and Performance Improvement , 2004 .

[120]  Jonathan B. Freund,et al.  Drag and wake modification of axisymmetric bluff bodies using Coanda blowing , 1994 .

[121]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[122]  Michel Stanislas,et al.  Control of a decelerating boundary layer. Part 3: Optimization of round jets vortex generators , 2006 .

[123]  J. Nathan Kutz,et al.  Data-Driven Modeling & Scientific Computation: Methods for Complex Systems & Big Data , 2013 .

[124]  I. Mezić Spectral Properties of Dynamical Systems, Model Reduction and Decompositions , 2005 .

[125]  Chris Baker,et al.  Ground vehicles in high cross winds part I: Steady aerodynamic forces , 1991 .

[126]  Dong-Ho Lee,et al.  Aerodynamic Drag Reduction of Ahmed Model Using Synthetic Jet Array , 2013 .

[127]  D. M. Titterington,et al.  Neural Networks: A Review from a Statistical Perspective , 1994 .

[128]  Hod Lipson,et al.  Learning symbolic representations of hybrid dynamical systems , 2012, J. Mach. Learn. Res..

[129]  M. Amitay,et al.  Role of Actuation Frequency in Controlled Flow Reattachment over a Stalled Airfoil , 2002 .

[130]  Azeddine Kourta,et al.  Separation flow control on a generic ground vehicle using steady microjet arrays , 2010 .

[131]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[132]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[133]  Gunther Ramm,et al.  Some salient features of the time - averaged ground vehicle wake , 1984 .

[134]  Dan S. Henningson,et al.  Linear optimal control applied to instabilities in spatially developing boundary layers , 2002, Journal of Fluid Mechanics.

[135]  Clarence W. Rowley,et al.  Active control of flow-induced cavity oscillations , 2008 .

[136]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[137]  John C. Lin,et al.  Review of research on low-profile vortex generators to control boundary-layer separation , 2002 .

[138]  Robert J. Englar,et al.  Advanced Aerodynamic Devices to Improve the Performance, Economics, Handling and Safety of Heavy Vehicles , 2001 .

[139]  R. Goodman,et al.  Application of neural networks to turbulence control for drag reduction , 1997 .

[140]  Hadi Widjaya. Tjioe Feedback control of combustion oscillations , 2010 .

[141]  Mark N. Glauser,et al.  Proportional Closed-Loop Feedback Control of Flow Separation , 2007 .

[142]  J. Wesfreid,et al.  The wake of a cylinder performing rotary oscillations , 2006, Journal of Fluid Mechanics.

[143]  Clarence W. Rowley,et al.  Dynamics and control of high-reynolds-number flow over open cavities , 2006 .

[144]  Joshua L. Proctor,et al.  Discovering dynamic patterns from infectious disease data using dynamic mode decomposition , 2015, International health.

[145]  Israel J Wygnanski,et al.  The control of flow separation by periodic excitation , 2000 .

[146]  Clarence W. Rowley,et al.  Review of Active Control of Flow-Induced Cavity Resonance , 2003 .

[147]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[148]  Michele Milano,et al.  Neural network modeling for near wall turbulent flow , 2002 .

[149]  F. Takens Detecting strange attractors in turbulence , 1981 .

[150]  M. Hoagland,et al.  Feedback Systems An Introduction for Scientists and Engineers SECOND EDITION , 2015 .

[151]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[152]  J. Kutz,et al.  Compressive Sensing Based Machine Learning Strategy For Characterizing The Flow Around A Cylinder With Limited Pressure Measurements , 2013 .

[153]  D. Geropp,et al.  Drag reduction of motor vehicles by active flow control using the Coanda effect , 2000 .

[154]  Michel Stanislas,et al.  Control of a decelerating boundary layer. Part 1: Optimization of passive vortex generators , 2006 .

[155]  Azeddine Kourta,et al.  Salient and smooth edge ramps inducing turbulent boundary layer separation: Flow characterization for control perspective , 2014 .

[156]  Juha Karhunen,et al.  Representation and separation of signals using nonlinear PCA type learning , 1994, Neural Networks.

[157]  Richard W. Longman,et al.  Linear system identification via an asymptotically stable observer , 1991 .

[158]  Marc'Aurelio Ranzato,et al.  Large Scale Distributed Deep Networks , 2012, NIPS.

[159]  D. Jordan,et al.  Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers , 1979 .

[160]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[161]  David R. Williams,et al.  Linear models for control of cavity flow oscillations , 2006, Journal of Fluid Mechanics.

[162]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[163]  A.G. Alleyne,et al.  A survey of iterative learning control , 2006, IEEE Control Systems.

[164]  Azeddine Kourta,et al.  Closed-loop separation control over a sharp edge ramp using genetic programming , 2015, 1508.05268.

[165]  Clarence W. Rowley,et al.  Modeling, Simulation, and Control of Cavity Flow Oscillations , 2002 .

[166]  Tim Colonius,et al.  Closed-Loop Control of Lift for Longitudinal Gust Suppression at Low Reynolds Numbers , 2011 .

[167]  Dan S. Henningson,et al.  Linear feedback control and estimation applied to instabilities in spatially developing boundary layers , 2007, Journal of Fluid Mechanics.

[168]  Kunihiko Taira,et al.  Network-theoretic approach to sparsified discrete vortex dynamics , 2015, Journal of Fluid Mechanics.

[169]  Clarence W. Rowley,et al.  Model reduction using snapshot-based realizations , 2011 .

[170]  Marco Debiasi,et al.  Control of Subsonic Cavity Flows by Neural Networks - Analytical Models and Experimental Validation , 2005 .

[171]  Mark N. Glauser,et al.  Active Flow Control for High Speed Jets with Large Window PIV , 2015 .

[172]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.

[173]  M. Wernet Digital Particle Image Velocimetry , 2003 .

[174]  Marco Debiasi,et al.  Exploring strategies for closed-loop cavity flow control , 2004 .

[175]  A. Majda,et al.  Nonlinear Laplacian spectral analysis for time series with intermittency and low-frequency variability , 2012, Proceedings of the National Academy of Sciences.

[176]  N. Gautier,et al.  Feed-forward control of a perturbed backward-facing step flow , 2014, Journal of Fluid Mechanics.

[177]  J. T. Stuart Nonlinear Stability Theory , 1971, Handbook of Marine Craft Hydrodynamics and Motion Control.

[178]  Philip S. Yu,et al.  Top 10 algorithms in data mining , 2007, Knowledge and Information Systems.

[179]  C. Guaranteed Margins for LQG Regulators , 1972 .

[180]  Steven L. Brunton,et al.  Intracycle angular velocity control of cross-flow turbines , 2016, Nature Energy.

[181]  Jer-Nan Juang,et al.  An eigensystem realization algorithm for modal parameter identification and model reduction. [control systems design for large space structures] , 1985 .

[182]  M. Kopera Direct numerical simulation of turbulent flow over a backward-facing step , 2011 .

[183]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[184]  Dan S. Henningson,et al.  Input-Output Analysis and Control Design Applied to a Linear Model of Spatially Developing Flows , 2009 .

[185]  W. Hucho,et al.  Aerodynamics of Road Vehicles , 1987 .

[186]  Steven L. Brunton,et al.  Compressive Sensing and Low-Rank Libraries for Classification of Bifurcation Regimes in Nonlinear Dynamical Systems , 2013, SIAM J. Appl. Dyn. Syst..

[187]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[189]  S. Brunton,et al.  Discovering governing equations from data by sparse identification of nonlinear dynamical systems , 2015, Proceedings of the National Academy of Sciences.

[190]  Mark N. Glauser,et al.  Towards practical flow sensing and control via POD and LSE based low-dimensional tools , 2004 .

[191]  Hod Lipson,et al.  Automated reverse engineering of nonlinear dynamical systems , 2007, Proceedings of the National Academy of Sciences.

[192]  C. Rowley,et al.  Modeling of transitional channel flow using balanced proper orthogonal decomposition , 2007, 0707.4112.

[193]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[194]  G. Stein,et al.  Multivariable feedback design: Concepts for a classical/modern synthesis , 1981 .

[195]  Benjamin Peherstorfer,et al.  Localized Discrete Empirical Interpolation Method , 2014, SIAM J. Sci. Comput..

[196]  B. Eckhardt,et al.  Statistical analysis of coherent structures in transitional pipe flow. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[197]  H. Liepmann,et al.  Control of laminar-instability waves using a new technique , 1982, Journal of Fluid Mechanics.

[198]  Bojan Vukasinovic,et al.  Dissipative small-scale actuation of a turbulent shear layer , 2010, Journal of Fluid Mechanics.

[199]  W. Marsden I and J , 2012 .

[200]  Azeddine Kourta,et al.  Drag reduction by flow separation control on a car after body , 2009 .

[201]  P. Schmid Analysis of fluid systems : stability , receptivity , sensitivity , 2013 .

[202]  Steven L. Brunton,et al.  Data-Driven Methods in Fluid Dynamics: Sparse Classification from Experimental Data , 2017 .

[203]  Jonathan D. Cryer,et al.  Time Series Analysis , 1986 .

[204]  Douglas P. Hart,et al.  High-Speed PIV Analysis Using Compressed Image Correlation , 1998 .

[205]  Norberto Mangiavacchi,et al.  Suppression of turbulence in wall‐bounded flows by high‐frequency spanwise oscillations , 1992 .

[206]  R. Firoozian Feedback Control Theory , 2009 .

[207]  Gianluigi Rozza,et al.  Reduced Order Methods for Modeling and Computational Reduction , 2013 .

[208]  Christian Oliver Paschereit,et al.  Feedback control of unstable thermoacoustic modes in an annular Rijke tube , 2012 .

[209]  B. R. Noack,et al.  Maximum-entropy closure for a Galerkin model of an incompressible periodic wake , 2012, Journal of Fluid Mechanics.

[210]  Makoto Tsubokura,et al.  Computational visualization of unsteady flow around vehicles using high performance computing , 2009 .

[211]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[212]  J. Nathan Kutz,et al.  Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation. , 2014, Optics express.

[213]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[214]  Wen-Xu Wang,et al.  Predicting catastrophes in nonlinear dynamical systems by compressive sensing. , 2011, Physical review letters.

[215]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[216]  Thomas Bewley,et al.  Optimal and robust control and estimation of linear paths to transition , 1998, Journal of Fluid Mechanics.

[217]  Kimon Roussopoulos,et al.  Feedback control of vortex shedding at low Reynolds numbers , 1993, Journal of Fluid Mechanics.

[218]  Clarence W. Rowley,et al.  Feedback control of cavity flow oscillations using simple linear models , 2012, Journal of Fluid Mechanics.

[219]  Louis N. Cattafesta,et al.  Cluster-based control of nonlinear dynamics , 2016, 1602.05416.

[220]  M. Samimy,et al.  Active Control of High Speed and High Reynolds Number Free Jets Using Plasma Actuators , 2006 .

[221]  Dennis G. Mabey,et al.  Analysis and Correlation of Data on Pressure Fluctuations in Separated Flow , 1972 .

[222]  N. Fabbiane,et al.  Adaptive and Model-Based Control Theory Applied to Convectively Unstable Flows , 2014, 1402.1746.

[223]  B. R. Noack,et al.  Closed-Loop Turbulence Control: Progress and Challenges , 2015 .

[224]  Michel Stanislas,et al.  FLOW CONTROL OVER A RAMP USING ACTIVE VORTEX GENERATORS , 2011, Proceeding of Seventh International Symposium on Turbulence and Shear Flow Phenomena.

[225]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[226]  M. Phan,et al.  Identification of observer/Kalman filter Markov parameters: Theory and experiments , 1993 .

[227]  Massimo Fornasier,et al.  Compressive Sensing , 2015, Handbook of Mathematical Methods in Imaging.

[228]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[229]  N. Zurlo,et al.  Unsteady behavior of back-facing step flow , 2001 .

[230]  Danny C. Sorensen,et al.  Nonlinear Model Reduction via Discrete Empirical Interpolation , 2010, SIAM J. Sci. Comput..

[231]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[232]  Bingni W. Brunton,et al.  Extracting spatial–temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition , 2014, Journal of Neuroscience Methods.

[233]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[234]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[235]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[236]  J. Chomaz,et al.  GLOBAL INSTABILITIES IN SPATIALLY DEVELOPING FLOWS: Non-Normality and Nonlinearity , 2005 .

[237]  Tony Hey,et al.  The Fourth Paradigm: Data-Intensive Scientific Discovery , 2009 .

[238]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[239]  Mehmed Kantardzic,et al.  Learning from Data , 2011 .

[240]  Steven L. Brunton,et al.  Self-Tuning Fiber Lasers , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[241]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[242]  Robert E. Schapire,et al.  The Boosting Approach to Machine Learning An Overview , 2003 .

[243]  Michel Stanislas,et al.  Characterisation of a high Reynolds number boundary layer subject to pressure gradient and separation , 2014 .

[244]  Wolfgang Banzhaf,et al.  Genetic Programming: An Introduction , 1997 .

[245]  Igor Mezi'c,et al.  Geometry of the ergodic quotient reveals coherent structures in flows , 2012, 1204.2050.

[246]  N. J. Cherry,et al.  Unsteady measurements in a separated and reattaching flow , 1984, Journal of Fluid Mechanics.

[247]  Maarten Keijzer,et al.  Learning Dynamical Systems Using Standard Symbolic Regression , 2014, EuroGP.

[248]  Volker E. Renn,et al.  Drag and Driving-Stability-Related Aerodynamic Forces and Their Interdependence-Results of Measurements on 3/8-Scale Basic Car Shapes , 1986 .

[249]  Dan S. Henningson,et al.  Linear feedback control and estimation of transition in plane channel flow , 2003, Journal of Fluid Mechanics.

[250]  B. R. Noack,et al.  A Finite-Time Thermodynamics of Unsteady Fluid Flows , 2008 .

[251]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[252]  Jean-Luc Aider,et al.  Closed-loop separation control using machine learning , 2014, Journal of Fluid Mechanics.

[253]  Hod Lipson,et al.  Distilling Free-Form Natural Laws from Experimental Data , 2009, Science.

[254]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[255]  John Kim,et al.  Physics and control of wall turbulence for drag reduction , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[256]  Michele Milano,et al.  Application of machine learning algorithms to flow modeling and optimization , 1999 .

[257]  Steven L. Brunton,et al.  Optimal Sensor Placement and Enhanced Sparsity for Classification , 2013, ArXiv.