Dependence maximization based label space dimension reduction for multi-label classification

High dimensionality of label space poses crucial challenge to efficient multi-label classification. Therefore, it is needed to reduce the dimensionality of label space. In this paper, we propose a new algorithm, called dependence maximization based label space reduction (DMLR), which maximizes the dependence between feature vectors and code vectors via Hilbert-Schmidt independence criterion while minimizing the encoding loss of labels. Two different kinds of instance kernel are discussed. The global kernel for DMLRG and the local kernel for DMLRL take global information and locality information into consideration respectively. Experimental results over six categorization problems validate the superiority of the proposed algorithm to state-of-art label space dimension reduction methods in improving performance at the cost of a very short time.

[1]  Le Song,et al.  Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..

[2]  Geoff Holmes,et al.  Multi-label Classification Using Ensembles of Pruned Sets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[3]  Uwe Krüger,et al.  Canonical Correlation Analysis based on Hilbert-Schmidt Independence Criterion and Centered Kernel Target Alignment , 2013, ICML.

[4]  Yoram Singer,et al.  BoosTexter: A Boosting-based System for Text Categorization , 2000, Machine Learning.

[5]  H. Hotelling Relations Between Two Sets of Variates , 1936 .

[6]  Michael I. Jordan,et al.  Unsupervised Kernel Dimension Reduction , 2010, NIPS.

[7]  Michael I. Jordan,et al.  Kernel dimension reduction in regression , 2009, 0908.1854.

[8]  Naonori Ueda,et al.  Parametric Mixture Models for Multi-Labeled Text , 2002, NIPS.

[9]  Ian H. Witten,et al.  The WEKA data mining software: an update , 2009, SKDD.

[10]  Zhi-Hua Zhou,et al.  Multilabel dimensionality reduction via dependence maximization , 2008, TKDD.

[11]  Grigorios Tsoumakas,et al.  Random K-labelsets for Multilabel Classification , 2022 .

[12]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[13]  Zhi-Hua Zhou,et al.  Multi-Label Learning by Exploiting Label Correlations Locally , 2012, AAAI.

[14]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  Jason Weston,et al.  A kernel method for multi-labelled classification , 2001, NIPS.

[17]  Eyke Hüllermeier,et al.  Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains , 2010, ICML.

[18]  Le Song,et al.  Supervised feature selection via dependence estimation , 2007, ICML '07.

[19]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[20]  Bernhard Schölkopf,et al.  Measuring Statistical Dependence with Hilbert-Schmidt Norms , 2005, ALT.

[21]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[22]  Jianhua Xu,et al.  An efficient multi-label support vector machine with a zero label , 2012, Expert Syst. Appl..

[23]  Jieping Ye,et al.  Hypergraph spectral learning for multi-label classification , 2008, KDD.

[24]  Kun Zhang,et al.  Multi-label learning by exploiting label dependency , 2010, KDD.

[25]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.

[26]  Chih-Jen Lin,et al.  Training v-Support Vector Regression: Theory and Algorithms , 2002, Neural Computation.

[27]  Hans-Peter Kriegel,et al.  Integrating structured biological data by Kernel Maximum Mean Discrepancy , 2006, ISMB.

[28]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[29]  Grigorios Tsoumakas,et al.  MULAN: A Java Library for Multi-Label Learning , 2011, J. Mach. Learn. Res..

[30]  Eyke Hüllermeier,et al.  Combining Instance-Based Learning and Logistic Regression for Multilabel Classification , 2009, ECML/PKDD.

[31]  Xiao Li,et al.  Multi-label learning with discriminative features for each label , 2015, Neurocomputing.

[32]  Hao Shen,et al.  Fast Kernel-Based Independent Component Analysis , 2009, IEEE Transactions on Signal Processing.

[33]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[34]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[35]  Jieping Ye,et al.  A shared-subspace learning framework for multi-label classification , 2010, TKDD.

[36]  Hsuan-Tien Lin,et al.  Feature-aware Label Space Dimension Reduction for Multi-label Classification , 2012, NIPS.

[37]  Hsuan-Tien Lin,et al.  Multilabel Classification with Principal Label Space Transformation , 2012, Neural Computation.

[38]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[39]  Ian H. Witten,et al.  Induction of model trees for predicting continuous classes , 1996 .

[40]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[41]  Mehryar Mohri,et al.  Algorithms for Learning Kernels Based on Centered Alignment , 2012, J. Mach. Learn. Res..

[42]  Grigorios Tsoumakas,et al.  Random k -Labelsets: An Ensemble Method for Multilabel Classification , 2007, ECML.

[43]  Rong Jin,et al.  Efficient multi-label ranking for multi-class learning: Application to object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[44]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[45]  Trevor Hastie,et al.  The Elements of Statistical Learning , 2001 .

[46]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.