Single-shot decoding of good quantum LDPC codes

Quantum Tanner codes constitute a family of quantum low-density parity-check (LDPC) codes with good parameters, i.e., constant encoding rate and relative distance. In this article, we prove that quantum Tanner codes also facilitate single-shot quantum error correction (QEC) of adversarial noise, where one measurement round (consisting of constant-weight parity checks) suffices to perform reliable QEC even in the presence of measurement errors. We establish this result for both the sequential and parallel decoding algorithms introduced by Leverrier and Z\'emor. Furthermore, we show that in order to suppress errors over multiple repeated rounds of QEC, it suffices to run the parallel decoding algorithm for constant time in each round. Combined with good code parameters, the resulting constant-time overhead of QEC and robustness to (possibly time-correlated) adversarial noise make quantum Tanner codes alluring from the perspective of quantum fault-tolerant protocols.

[1]  Jacob C. Bridgeman,et al.  Lifting Topological Codes: Three-Dimensional Subsystem Codes from Two-Dimensional Anyon Models , 2023, PRX Quantum.

[2]  Min-Hsiu Hsieh,et al.  General Distance Balancing for Quantum Locally Testable Codes , 2023, 2305.00689.

[3]  J. Preskill,et al.  Hierarchical memories: Simulating quantum LDPC codes with local gates , 2023, 2303.04798.

[4]  Anthony Leverrier,et al.  Decoding Quantum Tanner Codes , 2022, IEEE Transactions on Information Theory.

[5]  Thomas Vidick,et al.  Good Quantum LDPC Codes with Linear Time Decoders , 2022, STOC.

[6]  Anthony Leverrier,et al.  Efficient decoding up to a constant fraction of the code length for asymptotically good quantum codes , 2022, Electron. Colloquium Comput. Complex..

[7]  Eugene Tang,et al.  An Efficient Decoder for a Linear Distance Quantum LDPC Code , 2022, STOC.

[8]  Anthony Leverrier,et al.  Quantum Tanner codes , 2022, 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS).

[9]  Ron Livne,et al.  Locally testable codes with constant rate, distance, and locality , 2021, Electron. Colloquium Comput. Complex..

[10]  Gleb Kalachev,et al.  Asymptotically good Quantum and locally testable classical LDPC codes , 2021, STOC.

[11]  Benjamin J. Brown,et al.  Low-overhead fault-tolerant quantum computing using long-range connectivity. , 2021, Science advances.

[12]  Nicolas Delfosse,et al.  Constant-overhead quantum error correction with thin planar connectivity , 2021, Physical review letters.

[13]  Anirudh Krishna,et al.  Quantifying nonlocality: how outperforming local quantum codes is expensive , 2021, Physical review letters.

[14]  Jeongwan Haah,et al.  Fiber bundle codes: breaking the n1/2 polylog(n) barrier for Quantum LDPC codes , 2020, STOC.

[15]  Aleksander Kubica,et al.  Single-shot quantum error correction with the three-dimensional subsystem toric code , 2021, Nature Communications.

[16]  Nikolas P. Breuckmann,et al.  Balanced Product Quantum Codes , 2020, IEEE Transactions on Information Theory.

[17]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.

[18]  Tali Kaufman,et al.  Decodable quantum LDPC codes beyond the √n distance barrier using high dimensional expanders , 2020, SIAM Journal on Computing.

[19]  Nicolas Delfosse,et al.  Beyond Single-Shot Fault-Tolerant Quantum Error Correction , 2020, IEEE Transactions on Information Theory.

[20]  Anthony Leverrier,et al.  Towards local testability for quantum coding , 2019, ITCS.

[21]  Antoine Grospellier,et al.  Constant time decoding of quantum expander codes and application to fault-tolerant quantum computation. (Décodage des codes expanseurs quantiques et application au calcul quantique tolérant aux fautes) , 2019 .

[22]  Alexei Ashikhmin,et al.  Quantum Data-Syndrome Codes , 2019, IEEE Journal on Selected Areas in Communications.

[23]  Omar Fawzi,et al.  Constant Overhead Quantum Fault-Tolerance with Quantum Expander Codes , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[24]  Earl T. Campbell,et al.  A theory of single-shot error correction for adversarial noise , 2018, Quantum Science and Technology.

[25]  Matthew B. Hastings,et al.  Quantum Codes from High-Dimensional Manifolds , 2016, ITCS.

[26]  Yuichiro Fujiwara,et al.  Ability of stabilizer quantum error correction to protect itself from its own imperfection , 2014, ArXiv.

[27]  H. Bombin Gauge Color Codes: Optimal Transversal Gates and Gauge Fixing in Topological Stabilizer Codes , 2013, 1311.0879.

[28]  Dorit Aharonov,et al.  Quantum Locally Testable Codes , 2013, SIAM J. Comput..

[29]  Daniel Gottesman,et al.  Fault-tolerant quantum computation with constant overhead , 2013, Quantum Inf. Comput..

[30]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[31]  Borzoo Bonakdarpour,et al.  Active Stabilization , 2011, SSS.

[32]  B. Terhal,et al.  Tradeoffs for reliable quantum information storage in 2D systems , 2009, Quantum Cryptography and Computing.

[33]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[34]  H. Bombin,et al.  Exact topological quantum order in D=3 and beyond : Branyons and brane-net condensates , 2006, cond-mat/0607736.

[35]  H. Bombin,et al.  Topological quantum distillation. , 2006, Physical review letters.

[36]  E. Knill Quantum computing with realistically noisy devices , 2004, Nature.

[37]  Eli Ben-Sasson,et al.  Robust locally testable codes and products of codes , 2004, Random Struct. Algorithms.

[38]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[39]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[40]  A. Steane Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1996, quant-ph/9611027.

[41]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[42]  Gottesman,et al.  Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[43]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[44]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[45]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[46]  Andrew W. Cross,et al.  Quantum Locally Testable Code with Exotic Parameters , 2022, ArXiv.

[47]  Aleksander Kubica,et al.  The ABCs of the Color Code: A Study of Topological Quantum Codes as Toy Models for Fault-Tolerant Quantum Computation and Quantum Phases Of Matter , 2018 .

[48]  Ben Reichardt,et al.  Fault-Tolerant Quantum Computation , 2016, Encyclopedia of Algorithms.

[49]  B. Palomo,et al.  Single-Shot Fault-Tolerant Quantum Error Correction , 2014, 1404.5504.

[50]  I. Djordjevic Quantum Low-Density Parity-Check Codes , 2012 .

[51]  W. Marsden I and J , 2012 .

[52]  I. Miyazaki,et al.  AND T , 2022 .