RRT* GL Based Optimal Path Planning for Real-Time Navigation of UAVs

In this paper, we propose a path planning system for autonomous navigation of unmanned aerial vehicle based on a Rapidly-exploring Random Trees (RRT) combination of RRT* Goal and Limit. The system includes a point cloud obtained from the vehicle workspace with a RGB-D sensor, an identification module for interest regions and obstacles of the environment, and a collision-free path planner based on RRT for a safe and optimal navigation of vehicles in 3D spaces.

[1]  Du Xin,et al.  Neural network and genetic algorithm based global path planning in a static environment , 2005 .

[2]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[3]  Burkhard Wünsche,et al.  Using the Kinect as a navigation sensor for mobile robotics , 2012, IVCNZ '12.

[4]  Reza Safabakhsh,et al.  Computer Vision Techniques for Industrial Applications and Robot Control , 1982, Computer.

[5]  Steven M. LaValle,et al.  RRT-connect: An efficient approach to single-query path planning , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Cecilio Angulo,et al.  Robust video stabilization based on motion intention for low-cost micro aerial vehicles , 2014, 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14).

[7]  Mohammed Bennamoun,et al.  A novel algorithm for efficient depth segmentation using low resolution (Kinect) images , 2015, 2015 IEEE 10th Conference on Industrial Electronics and Applications (ICIEA).

[8]  Wilbert G. Aguilar,et al.  Haptic-based navigation for the virtual bronchoscopy , 2011 .

[9]  Stan C. A. M. Gielen,et al.  Neural Network Dynamics for Path Planning and Obstacle Avoidance , 1995, Neural Networks.

[10]  W. A. Hanson,et al.  Interactive 3D segmentation of MRI and CT volumes using morphological operations. , 1992, Journal of computer assisted tomography.

[11]  Patrick Benavidez,et al.  Mobile robot navigation and target tracking system , 2011, 2011 6th International Conference on System of Systems Engineering.

[12]  Siddhartha S. Srinivasa,et al.  Informed RRT*: Optimal sampling-based path planning focused via direct sampling of an admissible ellipsoidal heuristic , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Roland Siegwart,et al.  Kinect v2 for mobile robot navigation: Evaluation and modeling , 2015, 2015 International Conference on Advanced Robotics (ICAR).

[14]  Yogita Gigras,et al.  Path Planning Problem , 2014 .

[15]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[16]  Spyros G. Tzafestas,et al.  Robotics for engineers , 1987, Proceedings of the IEEE.

[17]  K. Sreedhar,et al.  Enhancement of Images using Morphological Transformation , 2012, ArXiv.

[18]  Cecilio Angulo,et al.  Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras , 2014 .

[19]  Manuela M. Veloso,et al.  Fast and inexpensive color image segmentation for interactive robots , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[20]  Homayoun Seraji,et al.  Behavior-based robot navigation on challenging terrain: A fuzzy logic approach , 2002, IEEE Trans. Robotics Autom..

[21]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Cecilio Angulo,et al.  Real-Time Model-Based Video Stabilization for Microaerial Vehicles , 2015, Neural Processing Letters.

[23]  Livio Pinto,et al.  Calibration of Kinect for Xbox One and Comparison between the Two Generations of Microsoft Sensors , 2015, Sensors.

[24]  Mark Whitty,et al.  Robotics, Vision and Control. Fundamental Algorithms in MATLAB , 2012 .

[25]  Amir Averbuch,et al.  Color image segmentation based on adaptive local thresholds , 2005, Image Vis. Comput..

[26]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[27]  Cecilio Angulo Bahón,et al.  Control autónomo de cuadricópteros para seguimiento de trayectorias , 2014 .

[28]  Wolfram Burgard,et al.  A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[29]  Cecilio Angulo,et al.  Real-time video stabilization without phantom movements for micro aerial vehicles , 2014, EURASIP J. Image Video Process..

[30]  Emilio Frazzoli,et al.  Incremental Sampling-based Algorithms for Optimal Motion Planning , 2010, Robotics: Science and Systems.

[31]  Quoc V. Le,et al.  Grasping novel objects with depth segmentation , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Masahiro Fujita,et al.  3D Perception and Environment Map Generation for Humanoid Robot Navigation , 2008, Int. J. Robotics Res..

[33]  Didier Devaurs,et al.  Efficient Sampling-Based Approaches to Optimal Path Planning in Complex Cost Spaces , 2014, WAFR.

[34]  Robert B. Fisher,et al.  Estimating 3-D rigid body transformations: a comparison of four major algorithms , 1997, Machine Vision and Applications.

[35]  Cecilio Angulo Bahón,et al.  Estabilización Robusta de Vídeo basada en Diferencia de Nivel de Gris , 2013 .

[36]  Elise Lachat,et al.  Assessment and Calibration of a RGB-D Camera (Kinect v2 Sensor) Towards a Potential Use for Close-Range 3D Modeling , 2015, Remote. Sens..

[37]  Huaping Liu,et al.  An improved ant colony algorithm for robot path planning , 2017, Soft Comput..