Generality of the functional structure of the neocortex

The fundamental similarities between various neocortical areas are elaborated by pointing out the common principles of its afferent, intrinsic, and efferent organization, with special emphasis on the generality of thalamocortical circuits. Interareal differences in morphology and function can be considered as accidental, i.e., depending on the circuit in which a given cortical area is involved. The neocortex is a link in the chain of afferent-efferent signal processing, and can be understood as a cooperative network that acts as a non-linear spatiotemporal filter with adaptive properties (memory) and that transforms afferent signal flow. It is assumed that these filter properties are identical for all neocortical areas. The functional role of a circumscribed cortical area depends exclusively on its position within a certain functional circuit and is defined by it.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  M. F. Washburn,et al.  Grundriss der Psychologie , 1894, Nature.

[3]  E. Becher Gehirn und Seele , 1911 .

[4]  A. Walker The primate thalamus , 1940 .

[5]  P. Bailey,et al.  Organization of the cerebral cortex. , 1948, The Proceedings of the Institute of Medicine of Chicago.

[6]  V. Mountcastle Modality and topographic properties of single neurons of cat's somatic sensory cortex. , 1957, Journal of neurophysiology.

[7]  G. Schaltenbrand,et al.  Einführung in die stereotaktischen Operationen : mit einem Atlas des menschlichen Gehirns = Introduction to stereotaxis, with an atlas of the human brain , 1959 .

[8]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[9]  J. Eccles Brain and Conscious Experience , 1965 .

[10]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.

[11]  G. Bourne The structure and function of nervous tissue , 1968 .

[12]  M. Amery,et al.  The Structure and Function of Nervous Tissue , 1969 .

[13]  B. Sakmann,et al.  Sensitivity distribution and spatial summation within receptive-field center of retinal on-center ganglion cells and transfer function of the retina. , 1970, Journal of neurophysiology.

[14]  M. Marín‐Padilla,et al.  Prenatal and early postnatal ontogenesis of the human motor cortex: a golgi study. I. The sequential development of the cortical layers. , 1970, Brain research.

[15]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[16]  P. Rakić,et al.  Neuronal migration, with special reference to developing human brain: a review. , 1973, Brain research.

[17]  O. Creutzfeldt Synaptic Organization of the Cerebral Cortex and its Role in Epilepsy , 1973 .

[18]  J. Hyvärinen,et al.  Function of the parietal associative area 7 as revealed from cellular discharges in alert monkeys. , 1974, Brain : a journal of neurology.

[19]  B. Boycott,et al.  The morphological types of ganglion cells of the domestic cat's retina , 1974, The Journal of physiology.

[20]  J. Kelly,et al.  Identification of possible inhibitory neurons in the pericruciate cortex of the cat. , 1974, Brain research.

[21]  Cragg Bg Plasticity of synapses. , 1974 .

[22]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[23]  V. Mountcastle,et al.  Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. , 1975, Journal of neurophysiology.

[24]  T. Powell,et al.  The intrinsic, association and commissural connections of area 17 on the visual cortex. , 1975, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  D. Hubel,et al.  The pattern of ocular dominance columns in macaque visual cortex revealed by a reduced silver stain , 1975, The Journal of comparative neurology.

[26]  C. Gilbert,et al.  The projections of cells in different layers of the cat's visual cortex , 1975, The Journal of comparative neurology.

[27]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[28]  P. Heggelund,et al.  Neural plasticity in visual cortex of adult cats after exposure to visual patterns. , 1975, Science.

[29]  J. Lund,et al.  Interlaminar connections and pyramidal neuron organisation in the visual cortex, area 17, of the Macaque monkey , 1975 .

[30]  H. H. Magalha˜es-Castro,et al.  Identification of corticotectal cells of the visual cortex of cats by means of horseradish peroxidase , 1975, Brain Research.

[31]  J. Lund,et al.  The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase , 1975, The Journal of comparative neurology.

[32]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental brain research.

[33]  A. Towe Notes on the hypothesis of columnar organization in somatosensory cerebral cortex. , 1975, Brain, behavior and evolution.

[34]  浜中 淑彦 Carl Wernicke;Der aphasische Symptomencomplex--Eine psychologische Studie auf anatomischer Basis(「失語症候群--解剖学的基礎に立つ心理学的研究」,Max Cohn & Weigert,Breslau,1874) , 1975 .

[35]  L. Benevento,et al.  The cortical projections of the inferior pulvinar and adjacent lateral pulvinar in the rhesus monkey (macaca mulatta): An autoradiographic study , 1976, Brain Research.

[36]  P. Redgrave,et al.  Hypothalamic Na+ and Ca++ ions and temperature set-point: New mechanisms of action of a central or peripheral thermal challenge and intrahypothalamic 5-HT, NE, PGE1, and pyrogen , 1976, Brain Research Bulletin.

[37]  S. Sherman,et al.  Receptive-field characteristics of neurons in cat striate cortex: Changes with visual field eccentricity. , 1976, Journal of neurophysiology.

[38]  A. Cowey,et al.  Topography of the retina and striate cortex and its relationship to visual acuity in rhesus monkeys and squirrel monkeys , 2004, Experimental Brain Research.

[39]  O. Creutzfeldt,et al.  The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat , 1977, Experimental Brain Research.

[40]  O. Creutzfeldt,et al.  Vertical organization in the visual cortex (area 17) in the cat , 2004, Experimental Brain Research.

[41]  H. Holländer On the origin of the corticotectal projections in the cat , 2004, Experimental Brain Research.

[42]  K. Sanderson Visual field projection columns and magnification factors in the lateral geniculate nucleus of the cat , 2004, Experimental Brain Research.

[43]  O. Creutzfeldt,et al.  A comparison of primary afferent and cortical neurone activity coding sinus hair movements in the cat , 1976, Experimental Brain Research.

[44]  O. Creutzfeldt,et al.  An intracellular analysis of visual cortical neurones to moving stimuli: Responses in a co-operative neuronal network , 2004, Experimental Brain Research.

[45]  P. Heggelund,et al.  The depth distribution of optimal stimulus orientations for neurones in cat area 17 , 1977, Experimental Brain Research.

[46]  R. Hess,et al.  The horizontal spread of intracortical inhibition in the visual cortex , 1975, Experimental Brain Research.