Asymptotically good Quantum and locally testable classical LDPC codes

We study classical and quantum LDPC codes of constant rate obtained by the lifted product construction over non-abelian groups. We show that the obtained families of quantum LDPC codes are asymptotically good, which proves the qLDPC conjecture. Moreover, we show that the produced classical LDPC codes are also asymptotically good and locally testable with constant query and soundness parameters, which proves a well-known conjecture in the field of locally testable codes.

[1]  Ran J. Tessler,et al.  New cosystolic expanders from tensors imply explicit Quantum LDPC codes with Ω(√n logk n) distance , 2021, STOC.

[2]  Pavel Panteleev,et al.  Degenerate Quantum LDPC Codes With Good Finite Length Performance , 2019, Quantum.

[3]  Oded Goldreich,et al.  Short Locally Testable Codes and Proofs: A Survey in Two Parts , 2010, Property Testing.

[4]  Matthew B. Hastings,et al.  Homological product codes , 2013, STOC.

[5]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[6]  Nikolas P. Breuckmann,et al.  Balanced Product Quantum Codes , 2020, IEEE Transactions on Information Theory.

[7]  Arun Ram Some homological algebra , 2005 .

[8]  Avi Wigderson,et al.  Robust local testability of tensor products of LDPC codes ? , 2006 .

[9]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[10]  Eli Ben-Sasson,et al.  Robust locally testable codes and products of codes , 2004, Random Struct. Algorithms.

[11]  Yotam Dikstein,et al.  Locally testable codes via high-dimensional expanders , 2020, Electron. Colloquium Comput. Complex..

[12]  M. Deza,et al.  Distances in Algebra , 2013 .

[13]  Tali Kaufman,et al.  High dimensional expanders and property testing , 2014, ITCS.

[14]  L. Pryadko,et al.  Higher-Dimensional Quantum Hypergraph-Product Codes with Finite Rates. , 2018, Physical review letters.

[15]  Spencer W. Ng,et al.  Dual product codes for correction of multiple low-density burst errors , 1973, IEEE Trans. Inf. Theory.

[16]  Gleb Kalachev,et al.  Quantum LDPC Codes With Almost Linear Minimum Distance , 2020, IEEE Transactions on Information Theory.

[17]  L. Pryadko,et al.  Quantum Kronecker sum-product low-density parity-check codes with finite rate , 2012, 1212.6703.

[18]  Earl T. Campbell,et al.  A theory of single-shot error correction for adversarial noise , 2018, Quantum Science and Technology.

[19]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .

[20]  Alexander Barg,et al.  Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.

[21]  Ruihu Li,et al.  Constructions of quasi-twisted quantum codes , 2020, Quantum Inf. Process..

[22]  Gilles Zémor,et al.  Quantum LDPC codes with positive rate and minimum distance proportional to n½ , 2009, ISIT.

[23]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[24]  Anthony Leverrier,et al.  Towards local testability for quantum coding , 2019, ArXiv.

[25]  Daniel T. Wise Complete square complexes , 2007 .

[26]  Arthur T. White,et al.  TOPOLOGICAL GRAPH THEORY (Wiley Interscience Series in Discrete Mathematics and Optimization) , 1988 .

[27]  Gilles Zémor,et al.  Quantum Expander Codes , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[28]  Oded Goldreich,et al.  Locally testable codes and PCPs of almost-linear length , 2006, JACM.

[29]  Ryan O'Donnell,et al.  Explicit Abelian Lifts and Quantum LDPC Codes , 2021, ITCS.

[30]  R. Meshulam Graph codes and local systems , 2018, 1803.05643.

[31]  N. Linial,et al.  Expander Graphs and their Applications , 2006 .

[32]  A. Lubotzky,et al.  Quantum error correcting codes and 4-dimensional arithmetic hyperbolic manifolds , 2013, 1310.5555.

[33]  Aram W. Harrow,et al.  Sparse Quantum Codes From Quantum Circuits , 2014, IEEE Transactions on Information Theory.

[34]  Tali Kaufman,et al.  Decodable quantum LDPC codes beyond the square root distance barrier using high dimensional expanders , 2020, 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS).

[35]  M. Hastings On Quantum Weight Reduction , 2021, 2102.10030.

[36]  Madhu Sudan,et al.  Sparse Random Linear Codes are Locally Decodable and Testable , 2007, 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS'07).

[37]  A. Lubotzky HIGH DIMENSIONAL EXPANDERS , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[38]  Jeongwan Haah,et al.  Fiber bundle codes: breaking the n1/2 polylog(n) barrier for Quantum LDPC codes , 2020, STOC.

[39]  Dwijendra K. Ray-Chaudhuri,et al.  The Structure of 1-Generator Quasi-Twisted Codes and New Linear Codes , 2001, Des. Codes Cryptogr..

[40]  Daniel A. Spielman,et al.  Expander codes , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[41]  Tali Kaufman,et al.  Ramanujan Complexes and Bounded Degree Topological Expanders , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[42]  M. Freedman,et al.  Z(2)-Systolic Freedom and Quantum Codes , 2002 .

[43]  Ron Livne,et al.  Locally testable codes with constant rate, distance, and locality , 2021, Electron. Colloquium Comput. Complex..

[44]  Alexandra Kolla,et al.  On the Expansion of Group-Based Lifts , 2013, APPROX-RANDOM.

[45]  Giuliana P. Davidoff,et al.  Elementary number theory, group theory, and Ramanujan graphs , 2003 .

[46]  Lior Eldar,et al.  Local Hamiltonians Whose Ground States Are Hard to Approximate , 2015, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[47]  P. McMullen,et al.  Abstract Regular Polytopes , 2003, Geometric Regular Polytopes.

[48]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[49]  Hideki Imai,et al.  Quantum Quasi-Cyclic LDPC Codes , 2007, 2007 IEEE International Symposium on Information Theory.

[50]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[51]  Yan Jia,et al.  On quasi-twisted codes over finite fields , 2012, Finite Fields Their Appl..

[52]  Chinmay Nirkhe,et al.  Good approximate quantum LDPC codes from spacetime circuit Hamiltonians , 2018, STOC.

[53]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[54]  Robert Michael Tanner,et al.  A recursive approach to low complexity codes , 1981, IEEE Trans. Inf. Theory.

[55]  Jeongwan Haah Local stabilizer codes in three dimensions without string logical operators , 2011, 1101.1962.

[56]  Joel Friedman,et al.  A proof of Alon's second eigenvalue conjecture and related problems , 2004, ArXiv.

[57]  M. Kerimov The theory of error-correcting codes☆ , 1980 .

[58]  Dorit Aharonov,et al.  Quantum Locally Testable Codes , 2013, SIAM J. Comput..

[59]  Irit Dinur,et al.  The PCP theorem by gap amplification , 2006, STOC.

[60]  Jack K. Wolf,et al.  On codes derivable from the tensor product of check matrices , 1965, IEEE Trans. Inf. Theory.

[61]  I. Djordjevic Quantum Low-Density Parity-Check Codes , 2012 .

[62]  Gilles Zémor,et al.  Quantum LDPC Codes With Positive Rate and Minimum Distance Proportional to the Square Root of the Blocklength , 2009, IEEE Transactions on Information Theory.

[63]  M. Murty Ramanujan Graphs , 1965 .