Sorting with Objectives

Applying combinatorial optimization in the industry frequently yields cost savings delighting practitioners. Beyond that, at the core of some applications lies a particularly pretty theoretical problem rejoicing the mathematician. This thesis is devoted to sorting with objectives as a new powerful way to model logistics and sequencing problems in industrial applications in an integrated fashion. Its contributions are twofold: On the one hand, we are motivated by optimization endeavors in the steel industry, for which we develop combinatorial algorithms revealing significant optimization potential in everyday production. On the other hand, the foundation of our algorithm design is an in-depth analysis of the problems at hand, and it unveils theoretically appealing subproblems for which we obtain complexity and approximation results of interest in their own right. Throughout the thesis, graph theoretic models appear as a recurrent theme.

[1]  Gabriele Di Stefano,et al.  Track assignment , 2007, J. Discrete Algorithms.

[2]  Jeremy P. Spinrad,et al.  An improved edge bound on the interval number of a graph , 1987, J. Graph Theory.

[3]  Rommert Dekker,et al.  Advanced methods for container stacking , 2006, OR Spectr..

[4]  Piotr Berman,et al.  On the Approximation Properties of Independent Set Problem in Degree 3 Graphs , 1999, WADS.

[5]  Joseph Y.-T. Leung,et al.  Efficient algorithms for interval graphs and circular-arc graphs , 1982, Networks.

[6]  Miklós Bóna,et al.  A Survey of Stack-Sorting Disciplines , 2003, Electron. J. Comb..

[7]  J. Håstad Clique is hard to approximate withinn1−ε , 1999 .

[8]  Frank Harary,et al.  Covering and packing in graphs IV: Linear arboricity , 1981, Networks.

[9]  S. Dempe Annotated Bibliography on Bilevel Programming and Mathematical Programs with Equilibrium Constraints , 2003 .

[10]  Peter Cowling,et al.  A flexible decision support system for steel hot rolling mill scheduling , 2003, Comput. Ind. Eng..

[11]  Frank Harary,et al.  On double and multiple interval graphs , 1979, J. Graph Theory.

[12]  Donald E. Knuth,et al.  The Art of Computer Programming: Volume 3: Sorting and Searching , 1998 .

[13]  Marco E. Lübbecke,et al.  Sorting with Complete Networks of Stacks , 2008, ISAAC.

[14]  Doron Zeilberger,et al.  A proof of Julian West's conjecture that the number of two-stacksortable permutations of length n is 2(3n)!/((n + 1)!(2n + 1)!) , 1992, Discret. Math..

[15]  Walter Unger,et al.  The Complexity of Colouring Circle Graphs (Extended Abstract) , 1992, STACS.

[16]  Michael R. Bussieck,et al.  Scheduling trams in the morning , 1999, Math. Methods Oper. Res..

[17]  Vineet Bafna,et al.  Sorting by Transpositions , 1998, SIAM J. Discret. Math..

[18]  Douglas B. West,et al.  Extremal Values of the Interval Number of a Graph , 1980, SIAM J. Matrix Anal. Appl..

[19]  Jing Hu,et al.  Model Selection via Bilevel Optimization , 2006, The 2006 IEEE International Joint Conference on Neural Network Proceedings.

[20]  T. R. Walsh,et al.  The Towers of Hanoi Revisited: Moving the Rings by Counting the Moves , 1982, Inf. Process. Lett..

[21]  Kellogg S. Booth,et al.  Linear algorithms to recognize interval graphs and test for the consecutive ones property , 1975, STOC.

[22]  Miklós Bóna,et al.  Combinatorics of permutations , 2022, SIGA.

[23]  Mordecai Avriel,et al.  Container ship stowage problem: complexity and connection to the coloring of circle graphs , 2000, Discret. Appl. Math..

[24]  A. Itai,et al.  QUEUES, STACKS AND GRAPHS , 1971 .

[25]  Fanica Gavril,et al.  Algorithms for a maximum clique and a maximum independent set of a circle graph , 1973, Networks.

[26]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[27]  Nikola Ruskuc,et al.  Sorting with two ordered stacks in series , 2002, Theor. Comput. Sci..

[28]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[29]  Jakub Cerný,et al.  Coloring circle graphs , 2007, Electron. Notes Discret. Math..

[30]  Martin W. P. Savelsbergh,et al.  Branch-and-Price: Column Generation for Solving Huge Integer Programs , 1998, Oper. Res..

[31]  Charles J. Colbourn,et al.  Unit disk graphs , 1991, Discret. Math..

[32]  Maria Fox,et al.  Progress in AI Planning Research and Applications , 2002 .

[33]  Sophie Toulouse,et al.  On the Complexity of the Multiple Stack TSP, kSTSP , 2009, TAMC.

[34]  Matthias Ehrgott,et al.  An exact method for the double TSP with multiple stacks , 2010, Int. Trans. Oper. Res..

[35]  Drew McDermott,et al.  A Heuristic Estimator for Means-Ends Analysis in Planning , 1996, AIPS.

[36]  Lixin Tang,et al.  A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex , 2000, Eur. J. Oper. Res..

[37]  Walter Unger,et al.  On the k-Colouring of Circle-Graphs , 1988, STACS.

[38]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[39]  Paul Cull,et al.  Towers of Hanoi and Analysis of Algorithms , 1985 .

[40]  Tobias Achterberg,et al.  Constraint integer programming , 2007 .

[41]  Dana S. Nau,et al.  On the Complexity of Blocks-World Planning , 1992, Artif. Intell..

[42]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[43]  Jeremy P. Spinrad,et al.  Recognition of Circle Graphs , 1994, J. Algorithms.

[44]  Jing Hu,et al.  Bilevel Optimization and Machine Learning , 2008, WCCI.

[45]  Robert E. Tarjan,et al.  Sorting Using Networks of Queues and Stacks , 1972, J. ACM.

[46]  Rolf H. Möhring,et al.  Sequencing and Scheduling in Coil Coating with Shuttles , 2009, Models and Algorithms for Optimization in Logistics.

[47]  Sanjeev Khanna,et al.  On the Hardness of Approximating Max k-Cut and its Dual , 1997, Chic. J. Theor. Comput. Sci..

[48]  Ravi B. Boppana,et al.  Approximating maximum independent sets by excluding subgraphs , 1992, BIT Comput. Sci. Sect..

[49]  L. Lovász,et al.  Geometric Algorithms and Combinatorial Optimization , 1981 .

[50]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[51]  Reuven Bar-Yehuda,et al.  Scheduling split intervals , 2002, SODA '02.

[52]  John Paul C. Vergara,et al.  Sorting by bounded permutations , 1998 .

[53]  Jens Vygen,et al.  The Book Review Column1 , 2020, SIGACT News.

[54]  Moshe Lewenstein,et al.  Optimization problems in multiple-interval graphs , 2007, SODA '07.

[55]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[56]  R. Schultz,et al.  Two-stage stochastic integer programming : a survey , 1996 .

[57]  Jerome Bracken,et al.  Mathematical Programs with Optimization Problems in the Constraints , 1973, Oper. Res..

[58]  Jerrold R. Griggs Extremal values of the interval number of a graph, II , 1979, Discret. Math..

[59]  David A. Christie,et al.  Sorting Permutations by Block-Interchanges , 1996, Inf. Process. Lett..

[60]  Giorgio Gallo,et al.  Dispatching Buses in Parking Depots , 2001, Transp. Sci..

[61]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[62]  Tomás Kaiser Transversals of d-Intervals , 1997, Discret. Comput. Geom..

[63]  Heinz Mühlenbein,et al.  Evolution algorithms in combinatorial optimization , 1988, Parallel Comput..

[64]  Johan Håstad,et al.  Clique is hard to approximate within n/sup 1-/spl epsiv// , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[65]  Blai Bonet,et al.  A Robust and Fast Action Selection Mechanism for Planning , 1997, AAAI/IAAI.

[66]  Tim Roughgarden Stackelberg Scheduling Strategies , 2004, SIAM J. Comput..

[67]  Alexander A. Ageev Every circle graph of girth at least 5 is 3-colourable , 1999, Discret. Math..