Strong convexity of sandwiched entropies and related optimization problems

We present several theorems on strict and strong convexity, and higher order differential formulae for sandwiched quasi-relative entropy (a parametrized version of the classical fidelity). These are crucial for establishing global linear convergence of the gradient projection algorithm for optimization problems for these functions. The case of the classical fidelity is of special interest for the multimarginal optimal transport problem (the [Formula: see text]-coupling problem) for Gaussian measures.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  I. Olkin,et al.  The distance between two random vectors with given dispersion matrices , 1982 .

[3]  P. M. Alberti A note on the transition probability over C*-algebras , 1983 .

[4]  C. Villani Optimal Transport: Old and New , 2008 .

[5]  C. Givens,et al.  A class of Wasserstein metrics for probability distributions. , 1984 .

[6]  K. Audenaert,et al.  alpha-z-relative Renyi entropies , 2013, 1310.7178.

[7]  Rajendra Bhatia,et al.  The Riemannian Mean of Positive Matrices , 2013 .

[8]  D. Bures An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .

[9]  E. Carlen TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .

[10]  T. Andô,et al.  Matrix Young Inequalities , 1995 .

[11]  Serge Fehr,et al.  On quantum Renyi entropies: a new definition and some properties , 2013, ArXiv.

[12]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[13]  Nilanjana Datta,et al.  Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.

[14]  Roger D. Nussbaum,et al.  Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations , 1994, Differential and Integral Equations.

[15]  W. Gangbo,et al.  Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .

[16]  Anna Jencova Geodesic distances on density matrices , 2004 .

[17]  Adam Paszkiewicz,et al.  On quantum information , 2012, ArXiv.

[18]  A. C. Thompson ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .

[19]  M. Knott,et al.  On the optimal mapping of distributions , 1984 .

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Mario Berta,et al.  On variational expressions for quantum relative entropies , 2015, ArXiv.

[22]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[23]  Elliott H. Lieb,et al.  Monotonicity of a relative Rényi entropy , 2013, ArXiv.

[24]  S. Yun,et al.  Gradient projection methods for the $n$-coupling problem , 2019 .

[25]  Gerard J. Milburn,et al.  Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..

[26]  A. Uhlmann Density operators as an arena for differential geometry , 1993 .

[27]  W. Pusz,et al.  Functional calculus for sesquilinear forms and the purification map , 1975 .

[28]  Sébastien Bubeck,et al.  Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..

[29]  Mark M. Wilde,et al.  Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.

[30]  Guillaume Carlier,et al.  Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..

[31]  Serge Fehr,et al.  On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.

[32]  A. Uhlmann Transition Probability (Fidelity) and Its Relatives , 2011, 1106.0979.

[33]  K. Audenaert,et al.  α-z-Rényi relative entropies , 2015 .

[34]  Asuka Takatsu Wasserstein geometry of Gaussian measures , 2011 .

[35]  D. Dowson,et al.  The Fréchet distance between multivariate normal distributions , 1982 .

[36]  R. Bhatia,et al.  Norm inequalities related to the matrix geometric mean , 2012, 1502.04497.

[37]  R. Bhatia Positive Definite Matrices , 2007 .

[38]  Demetrio Stojanoff,et al.  Geometrical significance of the Löwner-Heinz inequality , 2000 .