Strong convexity of sandwiched entropies and related optimization problems
暂无分享,去创建一个
Rajendra Bhatia | Yongdo Lim | Tanvi Jain | R. Bhatia | Tanvi Jain | Y. Lim
[1] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[2] I. Olkin,et al. The distance between two random vectors with given dispersion matrices , 1982 .
[3] P. M. Alberti. A note on the transition probability over C*-algebras , 1983 .
[4] C. Villani. Optimal Transport: Old and New , 2008 .
[5] C. Givens,et al. A class of Wasserstein metrics for probability distributions. , 1984 .
[6] K. Audenaert,et al. alpha-z-relative Renyi entropies , 2013, 1310.7178.
[7] Rajendra Bhatia,et al. The Riemannian Mean of Positive Matrices , 2013 .
[8] D. Bures. An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite *-algebras , 1969 .
[9] E. Carlen. TRACE INEQUALITIES AND QUANTUM ENTROPY: An introductory course , 2009 .
[10] T. Andô,et al. Matrix Young Inequalities , 1995 .
[11] Serge Fehr,et al. On quantum Renyi entropies: a new definition and some properties , 2013, ArXiv.
[12] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[13] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[14] Roger D. Nussbaum,et al. Finsler structures for the part metric and Hilbert's projective metric and applications to ordinary differential equations , 1994, Differential and Integral Equations.
[15] W. Gangbo,et al. Optimal maps for the multidimensional Monge-Kantorovich problem , 1998 .
[16] Anna Jencova. Geodesic distances on density matrices , 2004 .
[17] Adam Paszkiewicz,et al. On quantum information , 2012, ArXiv.
[18] A. C. Thompson. ON CERTAIN CONTRACTION MAPPINGS IN A PARTIALLY ORDERED VECTOR SPACE , 1963 .
[19] M. Knott,et al. On the optimal mapping of distributions , 1984 .
[20] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[21] Mario Berta,et al. On variational expressions for quantum relative entropies , 2015, ArXiv.
[22] E. Lieb,et al. Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .
[23] Elliott H. Lieb,et al. Monotonicity of a relative Rényi entropy , 2013, ArXiv.
[24] S. Yun,et al. Gradient projection methods for the $n$-coupling problem , 2019 .
[25] Gerard J. Milburn,et al. Geometry of quantum states: an introduction to quantum entanglement by Ingemar Bengtsson and Karol Zyczkowski , 2006, Quantum Inf. Comput..
[26] A. Uhlmann. Density operators as an arena for differential geometry , 1993 .
[27] W. Pusz,et al. Functional calculus for sesquilinear forms and the purification map , 1975 .
[28] Sébastien Bubeck,et al. Convex Optimization: Algorithms and Complexity , 2014, Found. Trends Mach. Learn..
[29] Mark M. Wilde,et al. Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy , 2013, Communications in Mathematical Physics.
[30] Guillaume Carlier,et al. Barycenters in the Wasserstein Space , 2011, SIAM J. Math. Anal..
[31] Serge Fehr,et al. On quantum Rényi entropies: A new generalization and some properties , 2013, 1306.3142.
[32] A. Uhlmann. Transition Probability (Fidelity) and Its Relatives , 2011, 1106.0979.
[33] K. Audenaert,et al. α-z-Rényi relative entropies , 2015 .
[34] Asuka Takatsu. Wasserstein geometry of Gaussian measures , 2011 .
[35] D. Dowson,et al. The Fréchet distance between multivariate normal distributions , 1982 .
[36] R. Bhatia,et al. Norm inequalities related to the matrix geometric mean , 2012, 1502.04497.
[37] R. Bhatia. Positive Definite Matrices , 2007 .
[38] Demetrio Stojanoff,et al. Geometrical significance of the Löwner-Heinz inequality , 2000 .