Cut problems in graphs with a budget constraint

We study budgeted variants of classical cut problems: the Multiway Cut problem, the Multicut problem, and the k-Cut problem, and provide approximation algorithms for these problems. Specifically, for the budgeted multiway cut and the k-cut problems we provide constant factor approximation algorithms. We show that the budgeted multicut problem is at least as hard to approximate as the sparsest cut problem, and we provide a bi-criteria approximation algorithm for it.

[1]  Jeffrey Scott Vitter,et al.  e-approximations with minimum packing constraint violation (extended abstract) , 1992, STOC '92.

[2]  Vijay V. Vazirani,et al.  Finding k Cuts within Twice the Optimal , 1995, SIAM J. Comput..

[3]  Harald Räcke,et al.  Minimizing Congestion in General Networks , 2002, FOCS.

[4]  Hadas Shachnai,et al.  Real-Time Scheduling with a Budget , 2006, Algorithmica.

[5]  Tuomas Aura,et al.  Analyzing single-server network inhibition , 2000, Proceedings 13th IEEE Computer Security Foundations Workshop. CSFW-13.

[6]  Oscar H. Ibarra,et al.  Fast Approximation Algorithms for the Knapsack and Sum of Subset Problems , 1975, JACM.

[7]  Mikkel Thorup,et al.  Rounding algorithms for a geometric embedding of minimum multiway cut , 1999, STOC '99.

[8]  David Kempe,et al.  Unbalanced Graph Cuts , 2005, ESA.

[9]  Éva Tardos,et al.  Min-Max Multiway Cut , 2004, APPROX-RANDOM.

[10]  Roberto Solis-Oba,et al.  Increasing the weight of minimum spanning trees , 1996, SODA '96.

[11]  Samir Khuller,et al.  The Budgeted Maximum Coverage Problem , 1999, Inf. Process. Lett..

[12]  Vijay V. Vazirani,et al.  Approximation Algorithms , 2001, Springer Berlin Heidelberg.

[13]  Anupam Gupta,et al.  Embeddings of negative-type metrics and an improved approximation to generalized sparsest cut , 2005, SODA '05.

[14]  Mihalis Yannakakis,et al.  Primal-dual approximation algorithms for integral flow and multicut in trees , 1997, Algorithmica.

[15]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[16]  Rakesh V. Vohra,et al.  A Probabilistic Analysis of the Maximal Covering Location Problem , 1993, Discret. Appl. Math..

[17]  Satish Rao,et al.  Expander flows, geometric embeddings and graph partitioning , 2004, STOC '04.

[18]  Maxim Sviridenko,et al.  A note on maximizing a submodular set function subject to a knapsack constraint , 2004, Oper. Res. Lett..

[19]  Yuval Rabani,et al.  An O(log k) Approximate Min-Cut Max-Flow Theorem and Approximation Algorithm , 1998, SIAM J. Comput..

[20]  Satish Rao,et al.  A polynomial-time tree decomposition to minimize congestion , 2003, SPAA '03.

[21]  L. Wolsey Maximising Real-Valued Submodular Functions: Primal and Dual Heuristics for Location Problems , 1982, Math. Oper. Res..

[22]  James R. Lee,et al.  Euclidean distortion and the sparsest cut , 2005, STOC '05.

[23]  Yuval Rabani,et al.  An improved approximation algorithm for multiway cut , 1998, STOC '98.

[24]  Vijay V. Vazirani,et al.  Approximation algorithms for metric facility location and k-Median problems using the primal-dual schema and Lagrangian relaxation , 2001, JACM.

[25]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..