Luminance-contrast mechanisms in humans: Visual evoked potentials and a nonlinear model

Isolated-checks were luminance-modulated temporally to elicit VEPs. Bright or dark checks were used to drive ON or OFF pathways, and low or high-contrast conditions were used to emphasize activity from magnocellular or parvocellular pathways. Manipulation of stimulus parameters and frequency analysis of the VEP were performed to obtain spatial and contrast-response functions. A biophysical explanation is offered for why the opposite polarity stimuli drive selectively ON and OFF pathways in primary visual cortex, and a lumped biophysical model is proposed to quantify the data and characterize changes in the dynamics of the system with contrast given a limited number of parameters. Response functions were found to match the characteristics of the targeted pathways.

[1]  Vance Zemon,et al.  SOME NEW METHODS FOR THE ANALYSIS OF LATERAL INTERACTIONS THAT INFLUENCE THE VISUAL EVOKED POTENTIAL * , 1980, Annals of the New York Academy of Sciences.

[2]  J. Camisa,et al.  Stimulus orientation and contrast constancy. , 1993, The International journal of neuroscience.

[3]  R. Jampel Mach Bands, Quantitative Studies on Neural Networks in the Retina. , 1966 .

[4]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[5]  M. L. Kietzman,et al.  Visual temporal integration and simple reaction time , 1972 .

[6]  Kenneth R Alexander,et al.  Contrast response properties of magnocellular and parvocellular pathways in retinitis pigmentosa assessed by the visual evoked potential. , 2004, Investigative ophthalmology & visual science.

[7]  V Zemon,et al.  Contrast-dependent responses in the human visual system: childhood through adulthood. , 1995, The International journal of neuroscience.

[8]  James P. Thomas,et al.  7 – THE PERCEPTION OF BRIGHTNESS AND DARKNESS: RELATIONS TO NEURONAL RECEPTIVE FIELDS , 1990 .

[9]  H. Jasper,et al.  The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology. , 1999, Electroencephalography and clinical neurophysiology. Supplement.

[10]  Jonathan D. Victor,et al.  A two-dimensional computer-controlled visual stimulator , 1980 .

[11]  G. Keppel,et al.  Design and Analysis: A Researcher's Handbook , 1976 .

[12]  W. Stiles,et al.  Interactions among chromatic mechanisms as inferred from positive and negative increment thresholds. , 1964, Vision research.

[13]  R. Shapley,et al.  The effect of contrast on the transfer properties of cat retinal ganglion cells. , 1978, The Journal of physiology.

[14]  J. Pokorny,et al.  Psychophysical signatures associated with magnocellular and parvocellular pathway contrast gain. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[15]  B. Breitmeyer,et al.  Temporal studies with flashed gratings: Inferences about human transient and sustained channels , 1977, Vision Research.

[16]  B. Katz,et al.  The effect of inhibitory nerve impulses on a crustacean muscle fibre , 1953, The Journal of physiology.

[17]  A. Sadun,et al.  Optic nerve damage in Alzheimer's disease. , 1990, Ophthalmology.

[18]  S. Giambrone,et al.  Retinal signal transmission in Duchenne muscular dystrophy: evidence for dysfunction in the photoreceptor/depolarizing bipolar cell pathway. , 1994, The Journal of clinical investigation.

[19]  J. Maunsell,et al.  Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  T. Wiesel,et al.  Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex , 1979, Nature.

[21]  D. Dacey,et al.  Dendritic field size and morphology of midget and parasol ganglion cells of the human retina. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Shapley,et al.  The contrast gain control of the cat retina , 1979, Vision Research.

[23]  Robert Ritch,et al.  Visual evoked potential assessment of the effects of glaucoma on visual subsystems , 1998, Vision Research.

[24]  D Regan,et al.  Delayed visual perception and delayed visual evoked potentials in the spinal form of multiple sclerosis and in retrobulbar neuritis. , 1976, Brain : a journal of neurology.

[25]  N. Daw,et al.  The effect of varying stimulus intensity on NMDA-receptor activity in cat visual cortex. , 1990, Journal of neurophysiology.

[26]  H. K. Hartline,et al.  THE RESPONSE OF SINGLE OPTIC NERVE FIBERS OF THE VERTEBRATE EYE TO ILLUMINATION OF THE RETINA , 1938 .

[27]  M. Georgeson,et al.  Contrast constancy: deblurring in human vision by spatial frequency channels. , 1975, The Journal of physiology.

[28]  I. Ohzawa,et al.  Contrast gain control in the cat's visual system. , 1985, Journal of neurophysiology.

[29]  T. Wiesel,et al.  Intrinsic connectivity and receptive field properties in visual cortex , 1985, Vision Research.

[30]  M. Carandini,et al.  Summation and division by neurons in primate visual cortex. , 1994, Science.

[31]  L. Spillmann,et al.  Visual Perception: The Neurophysiological Foundations , 1989 .

[32]  S B Nelson,et al.  Effect of stimulus contrast and size on NMDA receptor activity in cat lateral geniculate nucleus. , 1992, Journal of neurophysiology.

[33]  R. Shapley,et al.  Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex , 1992, Visual Neuroscience.

[34]  Randall L. Geiger,et al.  A negative conductance voltage gain enhancement technique for low voltage high speed CMOS op amp design , 2000, Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems (Cat.No.CH37144).

[35]  S. Magnussen,et al.  Effects of steady surround illumination on the brightness and darkness enhancement of flickering lights , 1975, Vision Research.

[36]  G. Dunkelberger,et al.  Chronic glaucoma selectively damages large optic nerve fibers. , 1987, Investigative ophthalmology & visual science.

[37]  M. Carandini,et al.  Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex. , 2000, Journal of neurophysiology.

[38]  John H. R. Maunsell,et al.  Functions of the ON and OFF channels of the visual system , 1986, Nature.

[39]  J. Movshon,et al.  Spatial summation in the receptive fields of simple cells in the cat's striate cortex. , 1978, The Journal of physiology.

[40]  R. Shapley,et al.  X and Y cells in the lateral geniculate nucleus of macaque monkeys. , 1982, The Journal of physiology.

[41]  R Shapley,et al.  Visual sensitivity and parallel retinocortical channels. , 1990, Annual review of psychology.

[42]  J. Victor,et al.  A new statistic for steady-state evoked potentials. , 1991, Electroencephalography and clinical neurophysiology.

[43]  D. G. Albrecht,et al.  Spatial frequency selectivity of cells in macaque visual cortex , 1982, Vision Research.

[44]  V Zemon,et al.  Asymmetries in ON and OFF visual pathways of humans revealed using contrast-evoked cortical potentials , 1988, Visual Neuroscience.

[45]  D. G. Albrecht,et al.  Nonlinear Properties of Visual Cortex Neurons: Temporal Dynamics, Stimulus Selectivity, Neural Performance , 2002 .

[46]  D. May Effects of Color Reversal of Figure and Ground Drawing Materials on Drawing Performance , 1978, Exceptional children.

[47]  Joel Pokorny,et al.  Sawtooth contrast sensitivity: Decrements have the edge , 1989, Vision Research.

[48]  D. Jameson,et al.  The perception of brightness and darkness , 1970 .

[49]  H. Spitzer,et al.  Simple- and complex-cell response dependences on stimulation parameters. , 1985, Journal of neurophysiology.

[50]  I. Bernstein,et al.  Some exposure duration effects in simple reaction time. , 1973, Journal of experimental psychology.

[51]  Joel Pokorny,et al.  Sawtooth contrast sensitivity: Effects of mean illuminance and low temporal frequencies , 1992, Vision Research.

[52]  J. Pokorny,et al.  Effect of sawtooth polarity on chromatic and luminance detection , 1994, Visual Neuroscience.

[53]  D. Hubel,et al.  Laminar and columnar distribution of geniculo‐cortical fibers in the macaque monkey , 1972, The Journal of comparative neurology.

[54]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[55]  R. Jung Visual Perception and Neurophysiology , 1973 .

[56]  Vision Research , 1961, Nature.

[57]  D. Hubel,et al.  Receptive fields and functional architecture of monkey striate cortex , 1968, The Journal of physiology.

[58]  E. Chichilnisky,et al.  Functional Asymmetries in ON and OFF Ganglion Cells of Primate Retina , 2002, The Journal of Neuroscience.

[59]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[60]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[61]  H. K. Hartline,et al.  The discharge of impulses in the optic nerve of Pecten in response to illumination of the eye , 1938 .

[62]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[63]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[64]  E Marder,et al.  Network Oscillations Generated by Balancing Graded Asymmetric Reciprocal Inhibition in Passive Neurons , 1999, The Journal of Neuroscience.

[65]  J D Victor,et al.  How the contrast gain control modifies the frequency responses of cat retinal ganglion cells. , 1981, The Journal of physiology.

[66]  J. Movshon,et al.  Linearity and Normalization in Simple Cells of the Macaque Primary Visual Cortex , 1997, The Journal of Neuroscience.

[67]  B. Knight,et al.  Contrast gain control in the primate retina: P cells are not X-like, some M cells are , 1992, Visual Neuroscience.

[68]  P. Sieving Photopic ON- and OFF-pathway abnormalities in retinal dystrophies. , 1993, Transactions of the American Ophthalmological Society.

[69]  L. Croner,et al.  Receptive fields of P and M ganglion cells across the primate retina , 1995, Vision Research.

[70]  J. Victor,et al.  Dynamic shifts of the contrast-response function , 1997, Visual Neuroscience.

[71]  DH Hubel,et al.  Psychophysical evidence for separate channels for the perception of form, color, movement, and depth , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[72]  D. O. Bowker,et al.  Suprathreshold spatiotemporal response characteristics of the human visual system. , 1983, Journal of the Optical Society of America.

[73]  J. Pokorny,et al.  Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[74]  T. Wiesel Neural Mechanisms of Visual Perception , 1997 .

[75]  John Krauskopf,et al.  Discrimination and detection of changes in luminance , 1980, Vision Research.

[76]  S. Grillner,et al.  Voltage-clamp frequency domain analysis of NMDA-activated neurons. , 1993, The Journal of experimental biology.

[77]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[78]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[79]  J. Victor The dynamics of the cat retinal X cell centre. , 1987, The Journal of physiology.

[80]  C. Schroeder,et al.  Dysfunction of early-stage visual processing in schizophrenia. , 2001, The American journal of psychiatry.

[81]  R. Mansfield,et al.  Latency functions in human vision. , 1973, Vision research.

[82]  T. Cohn,et al.  Spatial summation of foveal increments and decrements , 1975, Vision Research.

[83]  Lawrence S. Frishkopf,et al.  Model of Neural Inhibition in the Mammalian Cochlea , 1964 .

[84]  E. Kaplan,et al.  Dynamics of primate P retinal ganglion cells: responses to chromatic and achromatic stimuli , 1999, The Journal of physiology.

[85]  Romano Pe,et al.  Association for Research in Vision and Ophthalmology. , 2000 .

[86]  R. Shapley,et al.  Nonlinear spatial summation and the contrast gain control of cat retinal ganglion cells. , 1979, The Journal of physiology.

[87]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[88]  P. Somogyi Synaptic Organization of GABAergic Neurons and GABA A Receptors in the Lateral Geniculate Nucleus and Visual Cortex , 2006 .

[89]  M. Ogren,et al.  The neurological organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in old world and new world primates , 1978, The Journal of comparative neurology.

[90]  P. H. Schiller Central connections of the retinal ON and OFF pathways , 1982, Nature.

[91]  R. Shapley,et al.  The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[92]  V Zemon,et al.  An Electrophysiological Technique for Assessment of the Development of Spatial Vision , 1997, Optometry and vision science : official publication of the American Academy of Optometry.

[93]  S. Hochstein,et al.  On and off pathway contributions to apparent motion perception , 1990, Vision Research.

[94]  I. Ohzawa,et al.  Contrast gain control in the cat visual cortex , 1982, Nature.