The spatial bi-directional reflectance distribution function

Combining texture mapping with bi-directional reflectance distribution functions (BRDFs) yields a representation of surface appearance with both spatial and angular detail. We call a texture map with a unique BRDF at each pixel a spatial bi-directional reflectance distribution function, or SBRDF. The SBRDF is a six-dimensional function representing the reflectance from each incident direction to each exitant direction at each surface point. Because of the high dimensionality of the SBRDF, previous appearance capture and representation work has focused on either spatial or angular detail, has relied on a small set of basis BRDFs, or has only treated spatial detail statistically [Dana 1999; Lensch 2001].

[1]  Thomas Malzbender,et al.  Polynomial texture maps , 2001, SIGGRAPH.

[2]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[3]  Douglas Voorhies,et al.  Reflection vector shading hardware , 1994, SIGGRAPH.

[4]  HanrahanPat,et al.  Direct WYSIWYG painting and texturing on 3D shapes , 1990 .

[5]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[6]  Robert L. Cook,et al.  Shade trees , 1984, SIGGRAPH.

[7]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[8]  Hans-Peter Seidel,et al.  Towards interactive bump mapping with anisotropic shift-variant BRDFs , 2000, Workshop on Graphics Hardware.

[9]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[10]  Harry Shum,et al.  Synthesizing bidirectional texture functions for real-world surfaces , 2001, SIGGRAPH.

[11]  Paul E. Debevec,et al.  Acquiring the reflectance field of a human face , 2000, SIGGRAPH.

[12]  Paul Debevec,et al.  Modeling and Rendering Architecture from Photographs , 1996, SIGGRAPH 1996.

[13]  Hans-Peter Seidel,et al.  Image-Based Reconstruction of Spatially Varying Materials , 2001 .

[14]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[15]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[16]  Jan Kautz,et al.  Approximation of Glossy Reflection with Prefiltered Environment Maps , 2000, Graphics Interface.

[17]  Alain Fournier,et al.  Separating Reflection Functions for Linear Radiosity , 1995, Rendering Techniques.

[18]  Anselmo Lastra,et al.  A generalized surface appearance representation for computer graphics , 2002 .

[19]  Katsushi Ikeuchi,et al.  Object shape and reflectance modeling from observation , 1997, SIGGRAPH.

[20]  James F. Blinn,et al.  Texture and reflection in computer generated images , 1976, CACM.

[21]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[22]  Paul Debevec,et al.  Inverse global illumination: Recovering re?ectance models of real scenes from photographs , 1998 .

[23]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[24]  Kurt Akeley,et al.  Reality Engine graphics , 1993, SIGGRAPH.

[25]  Paul Lalonde,et al.  A Wavelet Representation of Reflectance Functions , 1997, IEEE Trans. Vis. Comput. Graph..