The m-least significant bits operation for quantum random number generation

Quantum random number generators (QRNGs) can provide genuine randomness based on the inherent unpredictable nature of quantum physics. The extracted randomness relies not only on the physical parts of the QRNG, such as the entropy source and the measurement device, but also on appropriate postprocessing method. The m-least significant bits (m-LSBs) operation is one of the simplest randomness extraction method, which has the advantage of easy implementations. Nonetheless, a detailed analysis of the m-LSBs operation in QRNGs is still missing. In this work we give a physical explanation of the m-LSBs operation by introducing a new positive operator-valued measurement operator, which is obtained by regrouping the results of coarse-grained measurements. Both trusted and untrusted source scenarios are discussed. The results show that the m-LSBs operation can extract randomness effectively under the condition of the trusted source, while it is not effective under the untrusted source scenario.

[1]  Hugo Krawczyk,et al.  LFSR-based Hashing and Authentication , 1994, CRYPTO.

[2]  Zhu Cao,et al.  Quantum random number generation , 2015, npj Quantum Information.

[3]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[4]  Miguel Herrero-Collantes,et al.  Quantum random number generators , 2016, 1604.03304.

[5]  Stefano Pirandola,et al.  8 GBit/s real-time quantum random number generator with non-iid samples , 2018 .

[6]  Yang Liu,et al.  The generation of 68 Gbps quantum random number by measuring laser phase fluctuations. , 2015, The Review of scientific instruments.

[7]  Zach DeVito,et al.  Opt , 2017 .

[8]  Luca Trevisan,et al.  Extractors and pseudorandom generators , 2001, JACM.

[9]  Xiongfeng Ma,et al.  High speed device-independent quantum random number generation without detection loophole , 2017, 2018 Conference on Lasers and Electro-Optics (CLEO).

[10]  Xiongfeng Ma,et al.  Randomness generation based on spontaneous emissions of lasers , 2015, 1505.03740.

[11]  Hong Guo,et al.  Bias-free true random-number generator. , 2009, Optics letters.

[12]  Hugo Zbinden,et al.  Megahertz-Rate Semi-Device-Independent Quantum Random Number Generators Based on Unambiguous State Discrimination , 2016, 1612.06566.

[13]  A. Zeilinger,et al.  Bell violation using entangled photons without the fair-sampling assumption , 2012, Nature.

[14]  He Xu,et al.  Postprocessing for quantum random number generators: entropy evaluation and randomness extraction , 2012, ArXiv.

[15]  Stefano Pironio,et al.  Random numbers certified by Bell’s theorem , 2009, Nature.

[16]  Caitlin R. S. Williams,et al.  Fast physical random number generator using amplified spontaneous emission. , 2010, Optics express.

[17]  H. Weinfurter,et al.  A fast and compact quantum random number generator , 1999, quant-ph/9912118.

[18]  B. M. Rogina,et al.  Quantum random number generator based on photonic emission in semiconductors. , 2006, The Review of scientific instruments.

[19]  A. Falcon Physics I.1 , 2018 .

[20]  Jiri Janousek,et al.  Violation of Bell's Inequality Using Continuous Variable Measurements. , 2018, Physical review letters.

[21]  Sharon L. Lohr,et al.  Sampling: Design and Analysis , 1999 .

[22]  H. Zeng,et al.  Quantum random-number generator based on a photon-number-resolving detector , 2011 .

[23]  I Kanter,et al.  Ultrahigh-speed random number generation based on a chaotic semiconductor laser. , 2009, Physical review letters.

[24]  Y Liu,et al.  Implementation of 1.6 Tb s−1 truly random number generation based on a super-luminescent emitting diode , 2013 .

[25]  M. Tomasin,et al.  Quantum randomness certified by the uncertainty principle , 2014, 1401.7917.

[26]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[27]  Hong Guo,et al.  5.4 Gbps real time quantum random number generator with simple implementation. , 2016, Optics express.

[28]  A. Zeilinger,et al.  Speakable and Unspeakable in Quantum Mechanics , 1989 .

[29]  J. Bell On the Einstein-Podolsky-Rosen paradox , 1964 .

[30]  Fabian Furrer,et al.  Reverse-reconciliation continuous-variable quantum key distribution based on the uncertainty principle , 2014, 1405.5965.

[31]  M Jofre,et al.  True random numbers from amplified quantum vacuum. , 2011, Optics express.

[32]  Hong Guo,et al.  Truly random number generation based on measurement of phase noise of a laser. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Hugo Zbinden,et al.  Self-testing quantum random number generator. , 2014, Physical review letters.

[34]  Maciej Lewenstein,et al.  Randomness in quantum mechanics: philosophy, physics and technology , 2016, Reports on progress in physics. Physical Society.

[35]  Rajarshi Roy,et al.  Scalable parallel physical random number generator based on a superluminescent LED. , 2011, Optics letters.

[36]  Hong Guo,et al.  High-Speed and Bias-Free Optical Random Number Generator , 2012, IEEE Photonics Technology Letters.

[37]  Hong Guo,et al.  6 Gbps real-time optical quantum random number generator based on vacuum fluctuation. , 2018, The Review of scientific instruments.

[38]  Jun Zhang,et al.  Practical and fast quantum random number generation based on photon arrival time relative to external reference , 2014, ArXiv.

[39]  Paolo Villoresi,et al.  Source-device-independent heterodyne-based quantum random number generator at 17 Gbps , 2018, Nature Communications.

[40]  Chen Cheng,et al.  Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator , 2018, Entropy.

[41]  Xiongfeng Ma,et al.  Coherence as a resource for source-independent quantum random-number generation , 2019, Physical Review A.

[42]  T. Symul,et al.  Real time demonstration of high bitrate quantum random number generation with coherent laser light , 2011, 1107.4438.

[43]  Paolo Villoresi,et al.  Source-Device-Independent Ultrafast Quantum Random Number Generation. , 2015, Physical review letters.

[44]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[45]  Zhu Cao,et al.  Loss-tolerant measurement-device-independent quantum random number generation , 2015, 1510.08960.

[46]  Yvo Desmedt,et al.  Advances in Cryptology — CRYPTO ’94 , 2001, Lecture Notes in Computer Science.

[47]  M. Wahl,et al.  An ultrafast quantum random number generator with provably bounded output bias based on photon arrival time measurements , 2011 .

[48]  Bing Qi,et al.  True randomness from an incoherent source. , 2016, The Review of scientific instruments.

[49]  J. F. Dynes,et al.  A high speed , postprocessing free , quantum random number generator , 2008 .

[50]  Ziyang Chen,et al.  Composable security analysis of continuous-variable measurement-device-independent quantum key distribution with squeezed states for coherent attacks , 2018, Physical Review A.

[51]  Zhengyu Li,et al.  High speed continuous variable source-independent quantum random number generation , 2017, Quantum Science and Technology.

[52]  R. Dong,et al.  A generator for unique quantum random numbers based on vacuum states , 2010 .

[53]  Xiao Yuan,et al.  Source-Independent Quantum Random Number Generation , 2015, Physical Review X.

[54]  Mario Berta,et al.  Continuous variable quantum key distribution: finite-key analysis of composable security against coherent attacks. , 2012 .

[55]  H. Lo,et al.  High-speed quantum random number generation by measuring phase noise of a single-mode laser. , 2010, Optics letters.

[56]  A. W. Sharpe,et al.  A High Speed, Post-Processing Free, Quantum Random Number Generator , 2008, ArXiv.

[57]  Yang Liu,et al.  68 Gbps quantum random number generation by measuring laser phase fluctuations , 2015, ArXiv.

[58]  J. F. Dynes,et al.  Robust random number generation using steady-state emission of gain-switched laser diodes , 2014, 1407.0933.

[59]  Hugo Zbinden,et al.  Quantum Random Number Generation for 1.25-GHz Quantum Key Distribution Systems , 2015, Journal of Lightwave Technology.

[60]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[61]  N. Gisin,et al.  Optical quantum random number generator , 1999, quant-ph/9907006.

[62]  Noam Nisan,et al.  The computational complexity of universal hash functions , 1993 .

[63]  Robert König,et al.  The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.

[64]  E. Jeffrey,et al.  Photon arrival time quantum random number generation , 2009 .

[65]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[66]  Gui-Lu Long,et al.  Scheme for a quantum random number generator , 2006 .

[67]  Andrew G. Glen,et al.  APPL , 2001 .

[68]  Qiang Zhang,et al.  Experimental measurement-device-independent quantum random number generation , 2016, ArXiv.

[69]  Yang Liu,et al.  Device-independent quantum random-number generation , 2018, Nature.

[70]  L. Tian,et al.  Practical quantum random number generator based on measuring the shot noise of vacuum states , 2010 .

[71]  Ling-An Wu,et al.  Random number generation based on the time of arrival of single photons. , 2005, Applied optics.

[72]  Xiaomin Guo,et al.  Enhancing Extractable Quantum Entropy in Vacuum-Based Quantum Random Number Generator , 2018 .

[73]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.

[74]  T. Symul,et al.  Maximization of Extractable Randomness in a Quantum Random-Number Generator , 2014, 1411.4512.

[75]  Noam Nisan,et al.  The computational complexity of universal hashing , 1990, Proceedings Fifth Annual Structure in Complexity Theory Conference.