Obstacle avoidance of redundant manipulators using a dual neural network

One important issue in motion planning and kinematic control of redundant manipulators is the real-time obstacle avoidance. Following the previous researches, a new problem formulation has been proposed in the sense that the collision avoidance scheme is described by dynamically-updated inequality constraints, and that physical constraints such as joint limits are also incorporated in the formulation. For real-time computation, the dual neural network is applied for the online solution of obstacle-avoidance inverse-kinematic control problem, and then simulated based on the PA10 robot manipulator in the presence of obstacles.

[1]  Jun Wang,et al.  A dual neural network for kinematic control of redundant robot manipulators , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[2]  Ernesto P. Lopes,et al.  Application of a blind person strategy for obstacle avoidance with the use of potential fields , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[3]  Danchi Jiang,et al.  A Lagrangian network for kinematic control of redundant robot manipulators , 1999, IEEE Trans. Neural Networks.

[4]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[5]  Jun Wang,et al.  Recurrent neural networks for minimum infinity-norm kinematic control of redundant manipulators , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[6]  Jun Wang,et al.  A dual neural network for constrained joint torque optimization of kinematically redundant manipulators , 2002, IEEE Trans. Syst. Man Cybern. Part B.

[7]  Jun Wang,et al.  A dual neural network for bi-criteria kinematic control of redundant manipulators , 2002, IEEE Trans. Robotics Autom..

[8]  Fan-Tien Cheng,et al.  Obstacle avoidance for redundant manipulators using the compact QP method , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[9]  Fan-Tien Cheng,et al.  Window-shaped obstacle avoidance for a redundant manipulator , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[10]  Stefano Chiaverini,et al.  Singularity-robust task-priority redundancy resolution for real-time kinematic control of robot manipulators , 1997, IEEE Trans. Robotics Autom..

[11]  Jun Wang,et al.  A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[12]  Bruno Siciliano,et al.  Closed-Loop Inverse Kinematics Schemes for Constrained Redundant Manipulators with Task Space Augmentation and Task Priority Strategy , 1991, Int. J. Robotics Res..

[13]  Tien C. Hsia,et al.  Obstacle avoidance inverse kinematics solution of redundant robots by neural networks , 1997, Robotica.

[14]  Fan-Tien Cheng,et al.  Resolving manipulator redundancy under inequality constraints , 1994, IEEE Trans. Robotics Autom..

[15]  S. P. Chan,et al.  A real-time planning algorithm for obstacle avoidance of redundant robots , 1996, J. Intell. Robotic Syst..

[16]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[17]  Homayoun Seraji,et al.  Real-time collision avoidance for redundant manipulators , 1995, IEEE Trans. Robotics Autom..

[18]  Bruno Siciliano,et al.  A solution algorithm to the inverse kinematic problem for redundant manipulators , 1988, IEEE J. Robotics Autom..

[19]  Pradeep K. Khosla,et al.  Manipulator control with superquadric artificial potential functions: theory and experiments , 1990, IEEE Trans. Syst. Man Cybern..

[20]  Tien C. Hsia,et al.  Joint trajectory generation for redundant robots in an environment with obstacles , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[21]  Jun Wang,et al.  Kinematic Control and Obstacle Avoidance for Redundant Manipulators Using a Recurrent Neural Network , 2001, ICANN.

[22]  Pradeep K. Khosla,et al.  Real-time obstacle avoidance using harmonic potential functions , 1991, IEEE Trans. Robotics Autom..