Cyber-Maritime Cycle: Autonomy of Marine Robots for Ocean Sensing

Marine robots are playing important roles in environmental sensing andocean observation applications. This tutorial introduces the overall systemsarchitecture and patterns for data streams that enable autonomyfor marine robots in environmental sensing applications. The articleproposes the concept of cyber-maritime cycle and surveys its use as arecent development in marine robotics. Supported by communicationnetworks, autonomy can be achieved using at least three feedback loopsin a cyber-maritime cycle, each running at different time scales or temporalfrequencies. When information is circulating around the cycle, itis transformed between two representations: the Lagrangian view andthe Eulerian view. Important functional blocks, such as mission planning,path planning, data assimilation, and data-driven modeling arediscussed as providing conversions between the two views of data. Thetutorial starts with an overview of enabling technologies in sensing,navigation, and communication for marine robotics. The design of experimentmethod is then reviewed to plan optimal sensing locations forthe robots. The tutorial discusses a class of path planning methods thatproduces desired trajectories of marine robots while combating oceancurrent. The lack of an accurate Eulerian map for ocean current willlead to tracking error when robots attempt to follow the planned pathsto collect Lagrangian data. The performance of robot navigation can beevaluated through the controlled Lagrangian particle tracking method,which computes trends and bounds for the growth of the tracking error.To improve the accuracy of the Eulerian map of ocean current, adata-driven modeling approach is adopted. Data assimilation methodsare leveraged to convert Lagrangian data into Eulerian map. In addition,the spatial and temporal resolution of Eulerian data maps canbe further improved by the motion tomography method. This tutorialgives a comprehensive view of data streams and major functional blocksunderlying autonomy of marine robots.

[1]  J. Bellingham,et al.  Autonomous Oceanographic Sampling Networks , 1993 .

[2]  Sajad Saeedi,et al.  AUV Navigation and Localization: A Review , 2014, IEEE Journal of Oceanic Engineering.

[3]  D. Thomson,et al.  A random walk model of dispersion in turbulent flows and its application to dispersion in a valley , 1986 .

[4]  Junku Yuh,et al.  Experimental study on advanced underwater robot control , 2005, IEEE Transactions on Robotics.

[5]  Stefan B. Williams,et al.  Behavior-based control for autonomous underwater exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[6]  Fumin Zhang,et al.  Motion tomography: Mapping flow fields using autonomous underwater vehicles , 2017, Int. J. Robotics Res..

[7]  Satish Kumar Jain,et al.  Neural networks : a classroom approach , 2005 .

[8]  David M. Fratantoni,et al.  UNDERWATER GLIDERS FOR OCEAN RESEARCH , 2004 .

[9]  Yuan Li,et al.  Research challenges and applications for underwater sensor networking , 2006, IEEE Wireless Communications and Networking Conference, 2006. WCNC 2006..

[10]  S. Kaczmarz Approximate solution of systems of linear equations , 1993 .

[11]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[12]  S. Lakshmivarahan,et al.  APPLICATION TO METEOROLOGICAL DATA ASSIMILATION , 2009 .

[13]  Naomi Ehrich Leonard,et al.  Coordinated control of an underwater glider fleet in an adaptive ocean sampling field experiment in Monterey Bay , 2010, J. Field Robotics.

[14]  Norman W. Scheffner,et al.  ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries. Report 1. Theory and Methodology of ADCIRC-2DDI and ADCIRC-3DL. , 1992 .

[15]  LEONID I. PITERBARG,et al.  The Top Lyapunov Exponent for a Stochastic Flow Modeling the Upper Ocean Turbulence , 2002, SIAM J. Appl. Math..

[16]  H. Thomas,et al.  Performance of an AUV navigation system at Arctic latitudes , 2005, IEEE Journal of Oceanic Engineering.

[17]  Karl Sammut,et al.  A survey on path planning for persistent autonomy of autonomous underwater vehicles , 2015 .

[18]  George Haller,et al.  Geometry of Cross-Stream Mixing in a Double-Gyre Ocean Model , 1999 .

[19]  Philip L. Richardson Drifters and Floats , 2008 .

[20]  Ionel M. Navon,et al.  Optimality of variational data assimilation and its relationship with the Kalman filter and smoother , 2001 .

[21]  Xiaolin Liang,et al.  Real-Time Modeling of Ocean Currents for Navigating Underwater Glider Sensing Networks , 2014, Cooperative Robots and Sensor Networks.

[22]  H. Schomberg,et al.  An improved approach to reconstructive ultrasound tomography , 1978 .

[23]  Robert Cierniak,et al.  X-Ray Computed Tomography in Biomedical Engineering , 2011 .

[24]  YangQuan Chen,et al.  Optimal mobile actuator/sensor network motion strategy for parameter estimation in a class of cyber physical systems , 2009, 2009 American Control Conference.

[25]  I. Shulmana,et al.  High resolution modeling and data assimilation in the Monterey Bay area , 2002 .

[26]  David R. Thompson,et al.  Multi-model ensemble forecasting and glider path planning in the Mid-Atlantic Bight , 2013 .

[27]  Russ E. Davis,et al.  Observations of Open-Ocean Deep Convection in the Labrador Sea from Subsurface Floats* , 2002 .

[28]  Emrecan Demirors,et al.  Advances in Underwater Acoustic Networking , 2013, Mobile Ad Hoc Networking.

[29]  W. Munk,et al.  Tidal spectroscopy and prediction , 1966, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[30]  Fumin Zhang,et al.  Cooperatively Mapping of the Underwater Acoustic Channel by Robot Swarms , 2014, WUWNet.

[31]  Gabor T. Herman,et al.  Fundamentals of Computerized Tomography: Image Reconstruction from Projections , 2009, Advances in Pattern Recognition.

[32]  Jerrold E. Marsden,et al.  Optimal trajectory generation for a glider in time-varying 2D ocean flows B-spline model , 2008, 2008 IEEE International Conference on Robotics and Automation.

[33]  Elizabeth W. North,et al.  Using a random displacement model to simulate turbulent particle motion in a baroclinic frontal zone: A new implementation scheme and model performance tests , 2006 .

[34]  Gabriel Oliver,et al.  Path Planning of Autonomous Underwater Vehicles in Current Fields with Complex Spatial Variability: an A* Approach , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[35]  Michel Rueher,et al.  Time-minimal path planning in dynamic current fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[36]  James C. McWilliams,et al.  Material Transport in Oceanic Gyres. Part II: Hierarchy of Stochastic Models , 2002 .

[37]  Y. Censor Row-Action Methods for Huge and Sparse Systems and Their Applications , 1981 .

[38]  T. Özgökmen,et al.  A Lagrangian subgridscale model for particle transport improvement and application in the Adriatic Sea using the Navy Coastal Ocean Model , 2007 .

[39]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[40]  David M. Fratantoni,et al.  Development, implementation and evaluation of a data-assimilative ocean forecasting system off the central California coast , 2009 .

[41]  Fumin Zhang,et al.  Future Trends in Marine Robotics , 2015 .

[42]  Michel Rueher,et al.  Adapting the wavefront expansion in presence of strong currents , 2008, 2008 IEEE International Conference on Robotics and Automation.

[43]  Gianluca Antonelli,et al.  Underwater robots: Motion and force control of vehicle , 2006 .

[44]  Pierre F. J. Lermusiaux,et al.  Verification and training of real-time forecasting of multi-scale ocean dynamics for maritime rapid environmental assessment , 2008 .

[45]  D. C. Webb,et al.  SLOCUM: an underwater glider propelled by environmental energy , 2001 .

[46]  S. Lerner,et al.  Portable Coastal Observatories , 2000 .

[47]  Hui X. Li,et al.  A probabilistic approach to optimal robust path planning with obstacles , 2006, 2006 American Control Conference.

[48]  Michaël Soulignac,et al.  Feasible and Optimal Path Planning in Strong Current Fields , 2011, IEEE Transactions on Robotics.

[49]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[50]  Fumin Zhang,et al.  Collaborative Autonomous Surveys in Marine Environments Affected by Oil Spills , 2014 .

[51]  K. Ganesan,et al.  Case-based path planning for autonomous underwater vehicles , 1994, Auton. Robots.

[52]  Axel Hackbarth,et al.  CFD in the Loop: Ensemble Kalman Filtering With Underwater Mobile Sensor Networks , 2014 .

[53]  Luis Moreno,et al.  The Path to Efficiency: Fast Marching Method for Safer, More Efficient Mobile Robot Trajectories , 2013, IEEE Robotics & Automation Magazine.

[54]  Leonid I. Piterbarg,et al.  Short-Term Prediction of Lagrangian Trajectories , 2001 .

[55]  Russ E. Davis,et al.  Observing the general circulation with floats , 1991 .

[56]  J. Sethian,et al.  Ordered upwind methods for static Hamilton–Jacobi equations , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[57]  George L. Mellor,et al.  Gulf of Mexico Monitoring System , 2000 .

[58]  Gaurav S. Sukhatme,et al.  Persistent ocean monitoring with underwater gliders: Adapting sampling resolution , 2011, J. Field Robotics.

[59]  Fumin Zhang,et al.  Trend and Bounds for Error Growth in Controlled Lagrangian Particle Tracking , 2014, IEEE Journal of Oceanic Engineering.

[60]  Rafal Zdunek,et al.  Kaczmarz extended algorithm for tomographic image reconstruction from limited-data , 2004, Math. Comput. Simul..

[61]  Pierre FJ Lermusiaux,et al.  Time-optimal path planning in dynamic flows using level set equations: theory and schemes , 2014, Ocean Dynamics.

[62]  A. Heemink,et al.  Lagrangian modelling of multi-dimensional advection-diffusion with space-varying diffusivities: theory and idealized test cases , 2007 .

[63]  Alex M. Andrew,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science (2nd edition) , 2000 .

[64]  Huai-Min Zhang,et al.  Isopycnal Lagrangian statistics from the North Atlantic Current RAFOS float observations , 2001 .

[65]  Dietmar Rempfer,et al.  Predictive flow-field estimation , 2009 .

[66]  Alexander F. Shchepetkin,et al.  The regional oceanic modeling system (ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model , 2005 .

[67]  S. Riser,et al.  The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004 , 2000 .

[68]  Fumin Zhang,et al.  Glider CT: reconstructing flow fields from predicted motion of underwater gliders , 2013, WUWNet.

[69]  George Haller,et al.  Finite time transport in aperiodic flows , 1998 .

[70]  Naomi Ehrich Leonard,et al.  Coordination of an underwater glider fleet for adaptive sampling , 2005 .

[71]  Werner G. Müller,et al.  Collecting Spatial Data: Optimum Design of Experiments for Random Fields , 1998 .

[72]  Alberto Alvarez,et al.  Path planning for autonomous underwater vehicles in realistic oceanic current fields: Application to gliders in the Western Mediterranean sea , 2009 .

[73]  Walter Munk,et al.  Ocean Acoustic Tomography , 1988 .

[74]  T. Poggio,et al.  Networks and the best approximation property , 1990, Biological Cybernetics.

[75]  James G. Bellingham,et al.  Can we do better than the grid survey: Optimal synoptic surveys in presence of variable uncertainty and decorrelation scales , 2014 .

[76]  Ian F. Akyildiz,et al.  Wireless Underwater Sensor Networks , 2010 .

[77]  D. Ucinski Optimal measurement methods for distributed parameter system identification , 2004 .

[78]  Pierre F. J. Lermusiaux,et al.  Path planning in multi-scale ocean flows: Coordination and dynamic obstacles , 2015 .

[79]  R. Davis,et al.  The autonomous underwater glider "Spray" , 2001 .

[80]  J. Cummings,et al.  Operational multivariate ocean data assimilation , 2005 .

[81]  P. Lions,et al.  Some Properties of Viscosity Solutions of Hamilton-Jacobi Equations. , 1984 .

[82]  Robert Cierniak Comprar X-Ray Computed Tomography in Biomedical Engineering | Cierniak, Robert | 9780857290267 | Springer , 2011 .

[83]  Scott Willcox,et al.  The Wave Glider: A persistent platform for ocean science , 2010, OCEANS'10 IEEE SYDNEY.

[84]  Elaine T. Spiller,et al.  A Hybrid Particle-Ensemble Kalman Filter for Lagrangian Data Assimilation , 2015 .

[85]  Junku Yuh,et al.  GA-Based Motion Planning For Underwater Robotic Vehicles , 1997 .

[86]  J. M. Lewis,et al.  Dynamic Data Assimilation: A Least Squares Approach , 2006 .

[87]  S.C. Shadden,et al.  Optimal trajectory generation in ocean flows , 2005, Proceedings of the 2005, American Control Conference, 2005..

[88]  J. Sethian,et al.  Fast methods for the Eikonal and related Hamilton- Jacobi equations on unstructured meshes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[89]  Fumin Zhang,et al.  Glider CT: Analysis and Experimental Validation , 2014, DARS.

[90]  Avinash C. Kak,et al.  Principles of computerized tomographic imaging , 2001, Classics in applied mathematics.

[91]  Naomi Ehrich Leonard,et al.  Cooperative Control for Ocean Sampling: The Glider Coordinated Control System , 2008, IEEE Transactions on Control Systems Technology.

[92]  John J. Leonard,et al.  Relocating Underwater Features Autonomously Using Sonar-Based SLAM , 2013, IEEE Journal of Oceanic Engineering.

[93]  A Alvarez,et al.  Model based decision support for underwater glider operation monitoring , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[94]  Franz S. Hover,et al.  Analytic error variance predictions for planar vehicles , 2009, 2009 IEEE International Conference on Robotics and Automation.

[95]  Gilles Reverdin,et al.  North Atlantic Ocean surface currents , 2003 .

[96]  Naomi Ehrich Leonard,et al.  Collective Motion, Sensor Networks, and Ocean Sampling , 2007, Proceedings of the IEEE.

[97]  K. Ide,et al.  A Method for Assimilation of Lagrangian Data , 2003 .

[98]  Fumin Zhang,et al.  Controlled Lagrangian particle tracking error under biased flow prediction , 2013, 2013 American Control Conference.

[99]  J. Radon On the determination of functions from their integral values along certain manifolds , 1986, IEEE Transactions on Medical Imaging.

[100]  Masahiro Ono,et al.  Chance-Constrained Optimal Path Planning With Obstacles , 2011, IEEE Transactions on Robotics.

[101]  Leonid I. Piterbarg,et al.  Predictability of Drifter Trajectories in the Tropical Pacific Ocean , 2001 .

[102]  Geoffrey A. Hollinger,et al.  Underwater Data Collection Using Robotic Sensor Networks , 2012, IEEE Journal on Selected Areas in Communications.

[103]  Yanwu Zhang,et al.  Tethys-class long range AUVs - extending the endurance of propeller-driven cruising AUVs from days to weeks , 2012, 2012 IEEE/OES Autonomous Underwater Vehicles (AUV).

[104]  J.J. Leonard,et al.  A behavior-based approach to adaptive feature detection and following with autonomous underwater vehicles , 2000, IEEE Journal of Oceanic Engineering.

[105]  Pierre F. J. Lermusiaux,et al.  Path planning in time dependent flow fields using level set methods , 2012, 2012 IEEE International Conference on Robotics and Automation.

[106]  W. Brechner Owens,et al.  A statistical description of the mean circulation and eddy variability in the northwestern Atlantic using SOFAR floats , 1991 .

[107]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[108]  Rainer Bleck,et al.  An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates , 2002 .

[109]  Alan F. Blumberg,et al.  Assimilation of Doppler radar current data into numerical ocean models , 1998 .

[110]  Thor I. Fossen,et al.  Guidance and control of ocean vehicles , 1994 .

[111]  Giuseppe Casalino,et al.  The Hybrid Glider/AUV Folaga , 2010, IEEE Robotics & Automation Magazine.

[112]  John C. Warner,et al.  Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the Regional Ocean Modeling System , 2008, J. Comput. Phys..

[113]  C. C. Eriksen,et al.  Seaglider: a long-range autonomous underwater vehicle for oceanographic research , 2001 .

[114]  Jooyoung Park,et al.  Universal Approximation Using Radial-Basis-Function Networks , 1991, Neural Computation.

[115]  Yu Tian,et al.  Motion Parameter Optimization and Sensor Scheduling for the Sea-Wing Underwater Glider , 2013, IEEE Journal of Oceanic Engineering.

[116]  Franz S. Hover,et al.  Motion planning with an analytic risk cost for holonomic vehicles , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[117]  David M. Fratantoni,et al.  North Atlantic surface circulation during the 1990's observed with satellite-tracked drifters , 2001 .

[118]  K. Tanabe Projection method for solving a singular system of linear equations and its applications , 1971 .

[119]  Yan Pailhas,et al.  Path Planning for Autonomous Underwater Vehicles , 2007, IEEE Transactions on Robotics.

[120]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[121]  G. Herman,et al.  Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. , 1970, Journal of theoretical biology.

[122]  Annalisa Griffa,et al.  Applications of stochastic particle models to oceanographic problems , 1996 .

[123]  David R. Thompson,et al.  Mission Planning in a Dynamic Ocean Sensorweb , 2009 .

[124]  R. Bellman Calculus of Variations (L. E. Elsgolc) , 1963 .

[125]  Stephen Wiggins,et al.  Synoptic Lagranian maps: Application to surface transport in Monterey Bay , 2006 .

[126]  Igor Mezic,et al.  Minimum time heading control of underpowered vehicles in time-varying ocean currents , 2013 .

[127]  Fumin Zhang,et al.  Real-Time Guidance of Underwater Gliders Assisted by Predictive Ocean Models , 2015 .

[128]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[129]  Naomi Ehrich Leonard,et al.  Control of coordinated patterns for ocean sampling , 2007, Int. J. Control.

[130]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .

[131]  Michel Rixen,et al.  Surface drift prediction in the Adriatic Sea using hyper-ensemble statistics on atmospheric, ocean and wave models : uncertainties and probability distribution areas , 2008 .

[132]  Stephen Wiggins,et al.  Geometric Structures, Lobe Dynamics, and Lagrangian Transport in Flows with Aperiodic Time-Dependence, with Applications to Rossby Wave Flow , 1998 .

[133]  Sean Kragelund,et al.  The trans-pacific crossing: long range adaptive path planning for UAVs through variable wind fields , 2003, Digital Avionics Systems Conference, 2003. DASC '03. The 22nd.

[134]  K. Ide,et al.  A Method for Assimilating Lagrangian Data into a Shallow-Water-Equation Ocean Model , 2006 .

[135]  Randy A. Freeman,et al.  Decentralized Environmental Modeling by Mobile Sensor Networks , 2008, IEEE Transactions on Robotics.

[136]  H. Stommel The Slocum Mission , 1989 .

[137]  A. Caiti,et al.  Evolutionary path planning for autonomous underwater vehicles in a variable ocean , 2004, IEEE Journal of Oceanic Engineering.

[138]  Maja Matijasevic,et al.  Control architectures for autonomous underwater vehicles , 1997 .