The soft constraints hypothesis: a rational analysis approach to resource allocation for interactive behavior.

Soft constraints hypothesis (SCH) is a rational analysis approach that holds that the mixture of perceptual-motor and cognitive resources allocated for interactive behavior is adjusted based on temporal cost-benefit tradeoffs. Alternative approaches maintain that cognitive resources are in some sense protected or conserved in that greater amounts of perceptual-motor effort will be expended to conserve lesser amounts of cognitive effort. One alternative, the minimum memory hypothesis (MMH), holds that people favor strategies that minimize the use of memory. SCH is compared with MMH across 3 experiments and with predictions of an Ideal Performer Model that uses ACT-R's memory system in a reinforcement learning approach that maximizes expected utility by minimizing time. Model and data support the SCH view of resource allocation; at the under 1000-ms level of analysis, mixtures of cognitive and perceptual-motor resources are adjusted based on their cost-benefit tradeoffs for interactive behavior.

[1]  Lee S. Smith,et al.  An Explanation , 1889, The American journal of dental science.

[2]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[3]  J. O. Urmson,et al.  The William James Lectures , 1963 .

[4]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[5]  Allen Newell,et al.  Computer text-editing: An information-processing analysis of a routine cognitive skill , 1980, Cognitive Psychology.

[6]  Donald A. Norman,et al.  Twelve Issues for Cognitive Science , 1980, Cogn. Sci..

[7]  Donald A. Norman,et al.  Steps toward a cognitive engineering: Design rules based on analyses of human error , 1982, CHI '82.

[8]  Allen Newell,et al.  The psychology of human-computer interaction , 1983 .

[9]  S. Ullman Visual routines , 1984, Cognition.

[10]  Donald A. Norman,et al.  User Centered System Design: New Perspectives on Human-Computer Interaction , 1988 .

[11]  Keith Duncan,et al.  Cognitive Engineering , 2017, Encyclopedia of GIS.

[12]  Stuart K. Card,et al.  Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys, for text selection on a CRT , 1987 .

[13]  Herbert A. Simon,et al.  Why a Diagram is (Sometimes) Worth Ten Thousand Words , 1987, Cogn. Sci..

[14]  Colin Potts,et al.  Design of Everyday Things , 1988 .

[15]  Kenneth Kotovsky,et al.  Complex Information Processing: The Impact of Herbert A. Simon , 1989 .

[16]  M. Bornstein,et al.  Attention and memory. , 1989, Pediatric annals.

[17]  J. H. Larkin,et al.  Display-based problem solving , 1989 .

[18]  John R. Anderson,et al.  Human memory: An adaptive perspective. , 1989 .

[19]  John R. Anderson The Adaptive Character of Thought , 1990 .

[20]  Neil A. Macmillan,et al.  Detection Theory: A User's Guide , 1991 .

[21]  Richard Reviewer-Granger Unified Theories of Cognition , 1991, Journal of Cognitive Neuroscience.

[22]  John R. Anderson Is human cognition adaptive? , 1991, Behavioral and Brain Sciences.

[23]  John R. Anderson,et al.  Reflections of the Environment in Memory Form of the Memory Functions , 2022 .

[24]  M. Just,et al.  From the SelectedWorks of Marcel Adam Just 1992 A capacity theory of comprehension : Individual differences in working memory , 2017 .

[25]  H. Simon,et al.  What is an “Explanation” of Behavior? , 1992 .

[26]  Michael E. Atwood,et al.  Project Ernestine: Validating a GOMS Analysis for Predicting and Explaining Real-World Task Performance , 1993, Hum. Comput. Interact..

[27]  Donald A. Norman,et al.  Cognition in the Head and in the World: An Introduction to the Special Issue on Situated Action , 1993, Cogn. Sci..

[28]  Paul P. Maglio,et al.  On Distinguishing Epistemic from Pragmatic Action , 1994, Cogn. Sci..

[29]  Jeff B. Pelz,et al.  Visual Representations in a Natural Visuo-motor Task , 1995 .

[30]  D. Ballard,et al.  Memory Representations in Natural Tasks , 1995, Journal of Cognitive Neuroscience.

[31]  Gerald L. Lohse,et al.  Organizational Behavior and Human Decision Processes a Comparison of Two Process Tracing Methods for Choice Tasks , 2022 .

[32]  N. Berthier Learning to reach: A mathematical model. , 1996 .

[33]  H. Simon,et al.  The sciences of the artificial (3rd ed.) , 1996 .

[34]  M A Just,et al.  The capacity theory of comprehension: new frontiers of evidence and arguments. , 1996, Psychological review.

[35]  David E. Kieras,et al.  An Overview of the EPIC Architecture for Cognition and Performance With Application to Human-Computer Interaction , 1997, Hum. Comput. Interact..

[36]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[37]  C. Lebiere,et al.  The Atomic Components of Thought , 1998 .

[38]  Andrew G. Barto,et al.  Reinforcement learning , 1998 .

[39]  N. Chater,et al.  Rational models of cognition , 1998 .

[40]  S. Payne,et al.  The Effects of Operator Implementation Cost on Planfulness of Problem Solving and Learning , 1998, Cognitive Psychology.

[41]  J. D. Johnson,et al.  Attention and Memory , 1998 .

[42]  R. A. Carlson,et al.  Procedural frameworks for simple arithmetic skills , 1998 .

[43]  N. Cowan An embedded-processes model of working memory , 1999 .

[44]  Kenton O'Hara,et al.  Planning and the user interface: the effects of lockout time and error recovery cost , 1999, Int. J. Hum. Comput. Stud..

[45]  R. A. Carlson,et al.  External support and the development of problem-solving routines. , 1999 .

[46]  A. Miyake,et al.  Models of Working Memory: Mechanisms of Active Maintenance and Executive Control , 1999 .

[47]  Randall W Engle,et al.  Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. , 1999, Journal of experimental psychology. General.

[48]  C. Lebiere,et al.  Models of Working Memory: Modeling Working Memory in a Unified Architecture: An ACT-R Perspective , 1999 .

[49]  M. Hayhoe Vision Using Routines: A Functional Account of Vision , 2000 .

[50]  K. Nakayama,et al.  On the Functional Role of Implicit Visual Memory for the Adaptive Deployment of Attention Across Scenes , 2000 .

[51]  Myeong-Ho Sohn,et al.  Cognitive control of multistep routines: Information processing and conscious intentions , 2000 .

[52]  N. Chater,et al.  Rational models of cognition , 1998 .

[53]  Wayne D. Gray,et al.  Milliseconds Matter: an Introduction to Microstrategies and to Their Use in Describing and Predicting Interactive Behavior Milliseconds Matter: an Introduction to Microstrategies and to Their Use in Describing and Predicting Interactive Behavior , 2022 .

[54]  J. Driver,et al.  Control of Cognitive Processes: Attention and Performance XVIII , 2000 .

[55]  Peter Dayan,et al.  Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems , 2001 .

[56]  Hansjörg Neth,et al.  Addition as Interactive Problem Solving , 2001 .

[57]  Dirk Van Rooy,et al.  Using a simulated user to explore human robot interfaces , 2002 .

[58]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[59]  Jonathan M.W. Slack,et al.  What Is an Explanation? , 2002, Science.

[60]  I.,et al.  Fitts' Law as a Research and Design Tool in Human-Computer Interaction , 1992, Hum. Comput. Interact..

[61]  W. Geisler Ideal Observer Analysis , 2002 .

[62]  Wayne D. Gray,et al.  Forgetting to Remember: The Functional Relationship of Decay and Interference , 2002, Psychological science.

[63]  Brian D. Ehret,et al.  Learning where to look: location learning in graphical user interfaces , 2002, CHI.

[64]  Margaret Wilson,et al.  Six views of embodied cognition , 2002, Psychonomic bulletin & review.

[65]  Michael Matessa,et al.  How Apex Automates CPM-GOMS , 2003 .

[66]  A. Clark,et al.  Books , 2004, INTR.

[67]  Myeong-Ho Sohn,et al.  Implicit temporal tuning of working memory strategy during cognitive skill acquisition. , 2003, The American journal of psychology.

[68]  M. Landy,et al.  Statistical decision theory and trade-offs in the control of motor response. , 2003, Spatial vision.

[69]  Frank J. Lee,et al.  Production Compilation: A Simple Mechanism to Model Complex Skill Acquisition , 2003, Hum. Factors.

[70]  Bruce Bower,et al.  Forgetting to remember: Emotion robs memory while reviving it , 2003 .

[71]  D. Purves,et al.  Why we see what we do , 2003 .

[72]  Wilson S. Geisler,et al.  A Bayesian approach to the evolution of perceptual and cognitive systems , 2003, Cogn. Sci..

[73]  Lisa M. Stevenson,et al.  Information acquisition strategies and the cognitive structure of arithmetic , 2003, Memory & cognition.

[74]  Christopher W. Myers,et al.  Meeting Newell's other challenge: Cognitive architectures as the basis for cognitive engineering , 2003, Behavioral and Brain Sciences.

[75]  Peter Dayan,et al.  Q-learning , 1992, Machine Learning.

[76]  Wai-Tat Fu,et al.  Resolving the paradox of the active user: stable suboptimal performance in interactive tasks , 2004, Cogn. Sci..

[77]  John R. Anderson,et al.  Extending the Computational Abilities of the Procedural Learning Mechanism in ACT-R , 2004 .

[78]  Joshua L. Philips,et al.  Reinforcement Learning of Dimensional Attention for Categorization , 2004 .

[79]  Wayne D. Gray,et al.  Episodic versus Semantic Memory: An Exploration of Models of Memory Decay in the Serial Attention Paradigm , 2004, ICCM.

[80]  Peter Dayan,et al.  Technical Note: Q-Learning , 2004, Machine Learning.

[81]  Yili Liu,et al.  Modeling Psychological Refractory Period (PRP) and Practice Effect on PRP with Queuing Networks and Reinforcement Learning Algorithms , 2004, ICCM.

[82]  L. Chalupa,et al.  The visual neurosciences , 2004 .

[83]  Wai-Tat Fu,et al.  Soft constraints in interactive behavior: the case of ignoring perfect knowledge in-the-world for imperfect knowledge in-the-head , 2004, Cogn. Sci..

[84]  Michael D. Byrne,et al.  Using Computational Cognitive Modeling to Diagnose Possible Sources of Aviation Error , 2005 .

[85]  John E. Laird,et al.  Soar-RL: integrating reinforcement learning with Soar , 2005, Cognitive Systems Research.

[86]  Richard L. Lewis,et al.  Information-Requirements Grammar: A Theory of the Structure of Competence for Interaction , 2005 .

[87]  A. Barto,et al.  Approximate optimal control as a model for motor learning. , 2005, Psychological review.

[88]  R. Hertwig,et al.  How forgetting aids heuristic inference. , 2005, Psychological review.

[89]  Wayne D. Gray,et al.  Adapting to the task environment: Explorations in expected value , 2005, Cognitive Systems Research.

[90]  Hau-San Wong,et al.  Human Computer Interaction , 2006, Encyclopedia of Multimedia.

[91]  John R. Anderson,et al.  From recurrent choice to skill learning: a reinforcement-learning model. , 2006, Journal of experimental psychology. General.

[92]  Wayne D. Gray,et al.  Suboptimal tradeoffs in information seeking , 2006, Cognitive Psychology.

[93]  Dario D. Salvucci Modeling Driver Behavior in a Cognitive Architecture , 2006, Hum. Factors.

[94]  Frank E. Ritter,et al.  The Rise of Cognitive Architectures , 2007, Integrated Models of Cognitive Systems.

[95]  Erik M. Altmann Control Signals and Goal-Directed Behavior , 2007, Integrated Models of Cognitive Systems.

[96]  Hansjörg Neth,et al.  The functional task environment , 2007 .

[97]  Michael S. Landy,et al.  Questions Without Words: A Comparison Between Decision Making Under Risk and Movement Planning Under Risk , 2007, Integrated Models of Cognitive Systems.

[98]  Richard L. Lewis,et al.  Bounding rational analysis: Constraints on the approach to optimality , 2007 .

[99]  A.,et al.  Cognitive Engineering , 2008, Encyclopedia of GIS.