Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay

Abstract In this paper, a new bounded force feedback control law is proposed to guarantee position and force tracking in nonlinear teleoperation systems in the presence of passive and nonpassive input interaction forces, time varying delay in their communication channels and sandwich linearity in their actuators. The proposed control is a nonlinear-proportional plus nonlinear damping (nP+nD ) controller with the addition of a nonlinear function of the environment force on the slave side and nonlinear function of the human force and force error on the master side, the transparency of the proposed scheme will be improved. The controller prevents the inputs from reaching their usual actuator bounds. Using a novel Lyapunov–Krasovskii functional, the asymptotic stability and tracking performance of the teleoperation system are established under some conditions on the controller parameters, actuator saturation characteristics and maximum allowable time delays.

[1]  Emanuel Slawiñski,et al.  PD‐like controllers for delayed bilateral teleoperation of manipulators robots , 2015 .

[2]  Hyo-Sung Ahn,et al.  Controller designs for bilateral teleoperation with input saturation , 2014 .

[3]  Hyo-Sung Ahn,et al.  A study on bilateral teleoperation with input saturation and systems , 2011, 2011 11th International Conference on Control, Automation and Systems.

[4]  Hyo-Sung Ahn,et al.  Synchronization of bilateral teleoperation systems with input saturation , 2010, ICCAS 2010.

[5]  Mark W. Spong,et al.  Bilateral teleoperation: An historical survey , 2006, Autom..

[6]  Tegoeh Tjahjowidodo,et al.  An investigation of friction-based tendon sheath model appropriate for control purposes , 2014 .

[7]  Michel Kinnaert,et al.  Control of teleoperators with joint flexibility, uncertain parameters and time-delays , 2014, Robotics Auton. Syst..

[8]  Andrew R. Teel,et al.  Asymptotic convergence from Lp stability , 1999, IEEE Trans. Autom. Control..

[9]  Hamed Ghafarirad,et al.  Enhanced time delayed linear bilateral teleoperation system by external force estimation , 2013 .

[10]  Yen-Chen Liu,et al.  Control of semi-autonomous teleoperation system with time delays , 2013, Autom..

[11]  Di-Hua Zhai,et al.  Robust saturation-based control of bilateral teleoperation without velocity measurements , 2015 .

[12]  Fernando Reyes-Cortés,et al.  Global trajectory tracking through static feedback for robot manipulators with input saturations , 2008, 2008 47th IEEE Conference on Decision and Control.

[13]  A. El Saddik,et al.  Nonlinear control for teleoperation systems with time varying delay , 2014 .

[14]  P.X. Liu,et al.  A Force-Reflection Algorithm for Improved Transparency in Bilateral Teleoperation With Communication Delay , 2007, IEEE/ASME Transactions on Mechatronics.

[15]  Mahdi Tavakoli,et al.  Adaptive Inverse Dynamics Four-Channel Control of Uncertain Nonlinear Teleoperation Systems , 2011, Adv. Robotics.

[16]  M.W. Spong,et al.  Adaptive coordination control of bilateral teleoperators with time delay , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[17]  M Zareinejad,et al.  A stable perturbation estimator in force-reflecting passivity-based teleoperation , 2013 .

[18]  Peter Xiaoping Liu,et al.  Convergence Analysis of Teleoperation Systems With Unsymmetric Time-Varying Delays , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Changchun Hua,et al.  Bilateral Teleoperation Design With/Without Gravity Measurement , 2012, IEEE Transactions on Instrumentation and Measurement.

[20]  Rajiv V. Dubey,et al.  Variable position mapping based assistance in teleoperation for nuclear cleanup , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[21]  A. Okamura Haptic feedback in robot-assisted minimally invasive surgery , 2009, Current opinion in urology.

[22]  Hong Wang,et al.  Adaptive neural network based prescribed performance control for teleoperation system under input saturation , 2015, J. Frankl. Inst..

[23]  P.X. Liu,et al.  Position-Error Based Schemes for Bilateral Teleoperation with Time Delay: Theory and Experiments , 2006, 2006 International Conference on Mechatronics and Automation.

[24]  Zhijun Li,et al.  Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays , 2011, 2011 IEEE International Conference on Robotics and Automation.

[25]  Xin-Ping Guan,et al.  Adaptive Fuzzy Finite-Time Coordination Control for Networked Nonlinear Bilateral Teleoperation System , 2014, IEEE Transactions on Fuzzy Systems.

[26]  Tingshu Hu,et al.  Control Systems with Actuator Saturation: Analysis and Design , 2001 .

[27]  Luis F. Peñín,et al.  Force reflection for time-delayed teleoperation of Space robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[28]  Peter Xiaoping Liu,et al.  Delay-Dependent Stability Criteria of Teleoperation Systems With Asymmetric Time-Varying Delays , 2010, IEEE Transactions on Robotics.

[29]  Tegoeh Tjahjowidodo,et al.  Nonlinear friction modelling and compensation control of hysteresis phenomena for a pair of tendon-sheath actuated surgical robots , 2015 .

[30]  Claudio Melchiorri,et al.  Control schemes for teleoperation with time delay: A comparative study , 2002, Robotics Auton. Syst..

[31]  Tobias Ortmaier,et al.  Advances in Telerobotics, chapter Robot Assisted Force Feedback Surgery , 2007 .

[32]  R. Ben Mrad,et al.  A discrete-time compensation algorithm for hysteresis in piezoceramic actuators , 2004 .

[33]  Peiyue Li,et al.  A simple fuzzy system for modelling of both rate-independent and rate-dependent hysteresis in piezoelectric actuators , 2013 .

[34]  Tobias Ortmaier,et al.  Robot Assisted Force Feedback Surgery , 2007, Advances in Telerobotics.

[35]  Thomas B. Sheridan,et al.  Space teleoperation through time delay: review and prognosis , 1993, IEEE Trans. Robotics Autom..

[36]  Tobias Ortmaier,et al.  Teleoperation Concepts in Minimal Invasive Surgery , 2001 .

[37]  Yonghong Tan,et al.  RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model , 2007 .

[38]  Xin-Ping Guan,et al.  Finite Time Control Design for Bilateral Teleoperation System With Position Synchronization Error Constrained , 2016, IEEE Transactions on Cybernetics.

[39]  Jean-Jacques E. Slotine,et al.  Telemanipulation with Time Delays , 2004, Int. J. Robotics Res..

[40]  Marcin Pelic,et al.  Application of geometry based hysteresis modelling in compensation of hysteresis of piezo bender actuator , 2016 .

[41]  Mahdi Tavakoli,et al.  Teleoperation in the presence of varying time delays and sandwich linearity in actuators , 2013, Autom..

[42]  Manfred Morari,et al.  A unified framework for the study of anti-windup designs , 1994, Autom..

[43]  Rogelio Lozano,et al.  Synchronization of bilateral teleoperators with time delay , 2008, Autom..

[44]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[45]  Heidar Ali Talebi,et al.  Adaptive neural network control of bilateral teleoperation with constant time delay , 2011, Nonlinear Dynamics.

[46]  Changchun Hua,et al.  Output-Feedback Adaptive Control of Networked Teleoperation System With Time-Varying Delay and Bounded Inputs , 2015, IEEE/ASME Transactions on Mechatronics.

[47]  Hendrik Van Brussel,et al.  Asymmetric-hysteresis compensation in piezoelectric actuators , 2012 .

[48]  Yuanqing Xia,et al.  Adaptive Control for Teleoperation System With Varying Time Delays and Input Saturation Constraints , 2016, IEEE Transactions on Industrial Electronics.