Piezoelectric Materials for Controlling Electro-Chemical Processes

[1]  C. Lam,et al.  Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution. , 2019, Angewandte Chemie.

[2]  S. Shahrokhian,et al.  Electrochemical sensing based on carbon nanoparticles: A review , 2019, Sensors and Actuators B: Chemical.

[3]  Jing Ren,et al.  High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition , 2019, Nano Energy.

[4]  Ya Yang,et al.  Piezoelectric material-polymer composite porous foam for efficient dye degradation via the piezo-catalytic effect. , 2019, ACS applied materials & interfaces.

[5]  W. Heineman,et al.  A Comprehensive Review: Development of Electrochemical Biosensors for Detection of Cyanotoxins in Freshwater. , 2019, ACS sensors.

[6]  Weiqing Yang,et al.  Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training , 2019, Nano Energy.

[7]  S. K. Rout,et al.  Structural, piezoelectric and highdensity energy storage properties of lead-free BNKT-BCZT solid solution , 2019, Journal of Alloys and Compounds.

[8]  Yunteng Cao,et al.  Highly Stretchable Supercapacitors via Crumpled Vertically Aligned Carbon Nanotube Forests , 2019, Advanced Energy Materials.

[9]  Tianfeng Chen,et al.  Designing Bioinspired 2D MoSe2 Nanosheet for Efficient Photothermal‐Triggered Cancer Immunotherapy with Reprogramming Tumor‐Associated Macrophages , 2019, Advanced Functional Materials.

[10]  H. Zandvliet,et al.  Control of the metal/WS2 contact properties using 2-dimensional buffer layers. , 2019, Nanoscale.

[11]  Peng-Fei Li,et al.  A molecular perovskite solid solution with piezoelectricity stronger than lead zirconate titanate , 2019, Science.

[12]  Zhijun Hu,et al.  A molecular ferroelectrics induced electroactive β-phase in solution processed PVDF films for flexible piezoelectric sensors , 2019, Journal of Materials Chemistry C.

[13]  Chang-feng Yan,et al.  Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook , 2019, Applied Catalysis B: Environmental.

[14]  K. Yao,et al.  Outstanding Piezoelectric Performance in Lead‐Free 0.95(K,Na)(Sb,Nb)O3‐0.05(Bi,Na,K)ZrO3 Thick Films with Oriented Nanophase Coexistence , 2019, Advanced Electronic Materials.

[15]  M. Armbrüster,et al.  Electrochemical Energy Conversion on Intermetallic Compounds: A Review , 2019, ACS Catalysis.

[16]  Y. Hu,et al.  Synthesis, stabilization and applications of 2-dimensional 1T metallic MoS2 , 2018 .

[17]  Tao Ding,et al.  An overview of lead-free piezoelectric materials and devices , 2018 .

[18]  Asif Abdullah Khan,et al.  A High Performance and Consolidated Piezoelectric Energy Harvester Based on 1D/2D Hybrid Zinc Oxide Nanostructures , 2018, Advanced Materials Interfaces.

[19]  B. Sumerlin,et al.  Next-generation self-healing materials , 2018, Science.

[20]  J. Íñiguez,et al.  Quantum-fluctuation-stabilized orthorhombic ferroelectric ground state in lead-free piezoelectric (Ba,Ca)(Zr,Ti)O3 , 2018, Physical Review B.

[21]  Zaiyao Fei,et al.  Ferroelectric switching of a two-dimensional metal , 2018, Nature.

[22]  Wei Li,et al.  Perovskite ferroelectrics go metal free , 2018, Science.

[23]  H. Cheng,et al.  Adsorption of reactive dyes onto chitosan/montmorillonite intercalated composite: multi-response optimization, kinetic, isotherm and thermodynamic study. , 2018, Water science and technology : a journal of the International Association on Water Pollution Research.

[24]  B. Nelson,et al.  Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation , 2018, iScience.

[25]  Xu Yu,et al.  2 dimensional WS2 tailored nitrogen-doped carbon nanofiber as a highly pseudocapacitive anode material for lithium-ion battery , 2018 .

[26]  A. Groisman,et al.  Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks , 2018, Nature.

[27]  M. Beller,et al.  Streamlined hydrogen production from biomass , 2018, Nature Catalysis.

[28]  Zong-Hong Lin,et al.  High efficient degradation of dye molecules by PDMS embedded abundant single-layer tungsten disulfide and their antibacterial performance , 2018 .

[29]  Zhong Lin Wang,et al.  High-Output Lead-Free Flexible Piezoelectric Generator Using Single-Crystalline GaN Thin Film. , 2018, ACS applied materials & interfaces.

[30]  D. Bao,et al.  Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration , 2018 .

[31]  Evan M. Erickson,et al.  Review on Challenges and Recent Advances in the Electrochemical Performance of High Capacity Li‐ and Mn‐Rich Cathode Materials for Li‐Ion Batteries , 2018 .

[32]  Yanmin Jia,et al.  Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. , 2018, Chemosphere.

[33]  Shane K. Mitchell,et al.  Hydraulically amplified self-healing electrostatic actuators with muscle-like performance , 2018, Science.

[34]  C. Bowen,et al.  Control of electro-chemical processes using energy harvesting materials and devices. , 2017, Chemical Society reviews.

[35]  J. Wu,et al.  Ultrahigh efficient degradation activity of single- and few-layered MoSe2 nanoflowers in dark by piezo-catalyst effect , 2017 .

[36]  V. M. Ortiz-Martínez,et al.  On the use of ferroelectric material LiNbO3 as novel photocatalyst in wastewater-fed microbial fuel cells , 2017 .

[37]  Ali Mostafaeipour,et al.  Techno-economic feasibility of a photovoltaic-wind power plant construction for electric and hydrogen production: A case study , 2017 .

[38]  S. Trolier-McKinstry,et al.  Development of crystallographic texture in chemical solution deposited lead zirconate titanate seed layers , 2017 .

[39]  Hexing Li,et al.  Engineering spherical lead zirconate titanate to explore the essence of piezo-catalysis , 2017 .

[40]  T. Hanemann,et al.  Pulsed laser deposition of piezoelectric lead zirconate titanate thin films maintaining a post-CMOS compatible thermal budget , 2017 .

[41]  Dipankar Mandal,et al.  Sustainable Energy Generation from Piezoelectric Biomaterial for Noninvasive Physiological Signal Monitoring , 2017 .

[42]  Yanmin Jia,et al.  High-efficiency and mechano-/photo- bi-catalysis of piezoelectric-ZnO@ photoelectric-TiO2 core-shell nanofibers for dye decomposition. , 2017, Chemosphere.

[43]  Chee Kai Chua,et al.  Emerging 3D‐Printed Electrochemical Energy Storage Devices: A Critical Review , 2017 .

[44]  Weiqi Qian,et al.  Thermo-electrochemical coupling for room temperature thermocatalysis in pyroelectric ZnO nanorods , 2017 .

[45]  Jinlan Wang,et al.  An organic-inorganic perovskite ferroelectric with large piezoelectric response , 2017, Science.

[46]  D. He,et al.  Flexible and Wearable All‐Solid‐State Supercapacitors with Ultrahigh Energy Density Based on a Carbon Fiber Fabric Electrode , 2017 .

[47]  R. Costa,et al.  Beyond traditional light-emitting electrochemical cells – a review of new device designs and emitters , 2017 .

[48]  Weiqi Qian,et al.  Strong piezo-electrochemical effect of multiferroic BiFeO3 square micro-sheets for mechanocatalysis , 2017 .

[49]  A. Pugazhendhi,et al.  Microbiome involved in microbial electrochemical systems (MESs): A review. , 2017, Chemosphere.

[50]  Hui Peng,et al.  Ni0.85Se@MoSe2 Nanosheet Arrays as the Electrode for High-Performance Supercapacitors. , 2017, ACS applied materials & interfaces.

[51]  Ya Xiong,et al.  Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination. , 2017, Environmental science & technology.

[52]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/alpha-MoC catalysts , 2017 .

[53]  Ting Liu,et al.  Synthesis of one-dimensional Bi2O3-Bi2O2.33 heterojunctions with high interface quality for enhanced visible light photocatalysis in degradation of high-concentration phenol and MO dyes , 2017 .

[54]  Weiqi Qian,et al.  Pyroelectrically Induced Pyro-Electro-Chemical Catalytic Activity of BaTiO3 Nanofibers under Room-Temperature Cold–Hot Cycle Excitations , 2017 .

[55]  Zhong Lin Wang,et al.  Investigating fold structures of 2D materials by quantitative transmission electron microscopy. , 2017, Micron.

[56]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts , 2017, Nature.

[57]  M. Dekkers,et al.  Strongly Enhanced Piezoelectric Response in Lead Zirconate Titanate Films with Vertically Aligned Columnar Grains , 2017, ACS applied materials & interfaces.

[58]  Kaushik Parida,et al.  Fast charging self-powered electric double layer capacitor , 2017 .

[59]  A. Bandodkar,et al.  Advanced Materials for Printed Wearable Electrochemical Devices: A Review , 2017 .

[60]  Woo Je Chang,et al.  Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution , 2016, Nature Energy.

[61]  S. Lau,et al.  Ferroelectric‐Driven Performance Enhancement of Graphene Field‐Effect Transistors Based on Vertical Tunneling Heterostructures , 2016, Advanced materials.

[62]  W. Cao,et al.  Vertical 2D MoO2/MoSe2 Core–Shell Nanosheet Arrays as High‐Performance Electrocatalysts for Hydrogen Evolution Reaction , 2016 .

[63]  Haosu Luo,et al.  Electric-field-treatment-induced enhancement of photoluminescence in Er3+-doped (Ba0.95Sr0.05)(Zr0.1Ti0.9)O3 piezoelectric ceramic , 2016 .

[64]  Yongming Fu,et al.  Ultrafast piezo-photocatalytic degradation of organic pollutions by Ag2O/tetrapod-ZnO nanostructures under ultrasonic/UV exposure , 2016 .

[65]  Haoxuan He,et al.  High Piezo-photocatalytic Efficiency of CuS/ZnO Nanowires Using Both Solar and Mechanical Energy for Degrading Organic Dye. , 2016, ACS applied materials & interfaces.

[66]  K. Chang,et al.  Piezopotential‐Induced Schottky Behavior of Zn1−xSnO3 Nanowire Arrays and Piezophotocatalytic Applications , 2016 .

[67]  Jia-liang Zhang,et al.  Enhanced piezoelectricity in plastically deformed nearly amorphous Bi12TiO20-BaTiO3 nanocomposites , 2016 .

[68]  R. Xiong,et al.  Symmetry breaking in molecular ferroelectrics. , 2016, Chemical Society reviews.

[69]  Q. Yang,et al.  Design and construction of ultra-thin MoSe2 nanosheet-based heterojunction for high-speed and low-noise photodetection , 2016, Nano Research.

[70]  Wenge Yang,et al.  FeO2 and FeOOH under deep lower-mantle conditions and Earth’s oxygen–hydrogen cycles , 2016, Nature.

[71]  Chih-Kai Chang,et al.  Piezo‐Catalytic Effect on the Enhancement of the Ultra‐High Degradation Activity in the Dark by Single‐ and Few‐Layers MoS2 Nanoflowers , 2016, Advanced materials.

[72]  Kasra Mohammadi,et al.  Evaluating the wind energy potential for hydrogen production: A case study , 2016 .

[73]  Chengming Jiang,et al.  High output nano-energy cell with piezoelectric nanogenerator and porous supercapacitor dual functions – A technique to provide sustaining power by harvesting intermittent mechanical energy from surroundings , 2016 .

[74]  B. Dkhil,et al.  Size Effect on Optical and Photocatalytic Properties in BiFeO3 Nanoparticles , 2016 .

[75]  Peihua Huang,et al.  On-chip and freestanding elastic carbon films for micro-supercapacitors , 2016, Science.

[76]  M. Roeffaers,et al.  Electrochemistry: Photocatalysts in close-up , 2016, Nature.

[77]  Byoung-Sun Lee,et al.  Silicon/Carbon Nanotube/BaTiO₃ Nanocomposite Anode: Evidence for Enhanced Lithium-Ion Mobility Induced by the Local Piezoelectric Potential. , 2016, ACS nano.

[78]  Sangtae Kim,et al.  Electrochemically driven mechanical energy harvesting , 2016, Nature Communications.

[79]  R. Ranjan,et al.  Relaxor ferroelectricity and electric-field-driven structural transformation in the giant lead-free piezoelectric (Ba,Ca)(Ti, Zr)O-3 , 2015 .

[80]  Hulin Zhang,et al.  Simultaneously Harvesting Thermal and Mechanical Energies based on Flexible Hybrid Nanogenerator for Self-Powered Cathodic Protection. , 2015, ACS applied materials & interfaces.

[81]  Senentxu Lanceros-Méndez,et al.  Piezoelectric polymers as biomaterials for tissue engineering applications. , 2015, Colloids and surfaces. B, Biointerfaces.

[82]  C. Moure,et al.  Recent advances in perovskites: Processing and properties , 2015 .

[83]  Ian D. Sharp,et al.  Interfacial band-edge energetics for solar fuels production , 2015 .

[84]  J. Hao,et al.  Magnetic‐Induced Luminescence from Flexible Composite Laminates by Coupling Magnetic Field to Piezophotonic Effect , 2015, Advanced materials.

[85]  J. Hao,et al.  Magnetic‐Induced Luminescence: Magnetic‐Induced Luminescence from Flexible Composite Laminates by Coupling Magnetic Field to Piezophotonic Effect (Adv. Mater. 30/2015) , 2015, Advances in Materials.

[86]  Peiyi Wu,et al.  Facile preparation of 3D MoS2/MoSe2 nanosheet–graphene networks as efficient electrocatalysts for the hydrogen evolution reaction , 2015 .

[87]  Haitao Huang,et al.  A rectification-free piezo-supercapacitor with a polyvinylidene fluoride separator and functionalized carbon cloth electrodes , 2015 .

[88]  Chuan Fu Tan,et al.  Self-Biased Hybrid Piezoelectric-Photoelectrochemical Cell with Photocatalytic Functionalities. , 2015, ACS nano.

[89]  G. Lindbergh,et al.  Piezo-Electrochemical Energy Harvesting with Lithium-Intercalating Carbon Fibers. , 2015, ACS applied materials & interfaces.

[90]  Sumanta Kumar Karan,et al.  Self-powered flexible Fe-doped RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy harvester. , 2015, Nanoscale.

[91]  Renfei Cheng,et al.  Structure and electrical properties of Bi1/2Na1/2TiO3-based lead-free piezoelectric ceramics , 2015 .

[92]  Sang-Jae Kim,et al.  Flexible, Hybrid Piezoelectric Film (BaTi(1-x)Zr(x)O3)/PVDF Nanogenerator as a Self-Powered Fluid Velocity Sensor. , 2015, ACS applied materials & interfaces.

[93]  Yannan Xie,et al.  Highly porous piezoelectric PVDF membrane as effective lithium ion transfer channels for enhanced self-charging power cell , 2015 .

[94]  Xudong Wang,et al.  Coupling of piezoelectric effect with electrochemical processes , 2015 .

[95]  Jeong Min Baik,et al.  Silk fibroin-based biodegradable piezoelectric composite nanogenerators using lead-free ferroelectric nanoparticles , 2015 .

[96]  Zhong Lin Wang,et al.  Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires , 2015 .

[97]  Kai Wang,et al.  Enhanced Broad Band Photodetection through Piezo‐Phototronic Effect in CdSe/ZnTe Core/Shell Nanowire Array , 2015 .

[98]  Kai Wang,et al.  Phototronics: Enhanced Broad Band Photodetection through Piezo‐Phototronic Effect in CdSe/ZnTe Core/Shell Nanowire Array (Adv. Electron. Mater. 4/2015) , 2015 .

[99]  Balasubramaniam Saravanakumar,et al.  Piezoelectric-driven self-charging supercapacitor power cell. , 2015, ACS nano.

[100]  Zhong Lin Wang,et al.  Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. , 2015, Nano letters.

[101]  Kao‐Shuo Chang,et al.  Study of ZnSnO3-nanowire piezophotocatalyst using two-step hydrothermal synthesis , 2015 .

[102]  R. Gordon,et al.  Band offsets of n-type electron-selective contacts on cuprous oxide (Cu2O) for photovoltaics , 2014 .

[103]  Xinyu Xue,et al.  PVDF mesoporous nanostructures as the piezo-separator for a self-charging power cell , 2014 .

[104]  N. Zhang,et al.  Enhancing the visible light photocatalytic performance of ternary CdS–(graphene–Pd) nanocomposites via a facile interfacial mediator and co-catalyst strategy , 2014 .

[105]  U. Waghmare,et al.  Extraordinary attributes of 2-dimensional MoS2 nanosheets , 2014 .

[106]  S. Pillai,et al.  New Insights into the Mechanism of Visible Light Photocatalysis. , 2014, The journal of physical chemistry letters.

[107]  Zhibin Zhang,et al.  Flexible piezoelectric nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE) thin film , 2014 .

[108]  L. Bartels 2‐Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1‐x)Se2xMonolayers. , 2014 .

[109]  Ping Zhao,et al.  Sponge‐Like Piezoelectric Polymer Films for Scalable and Integratable Nanogenerators and Self‐Powered Electronic Systems , 2014 .

[110]  Haosu Luo,et al.  Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0.52Ti0.48)O3 fibers , 2014 .

[111]  B. Dunn,et al.  Where Do Batteries End and Supercapacitors Begin? , 2014, Science.

[112]  Yan Zhang,et al.  PVDF–PZT nanocomposite film based self-charging power cell , 2014, Nanotechnology.

[113]  Maurizio Valle,et al.  POSFET tactile sensing chips using CMOS technology , 2013, 2013 IEEE SENSORS.

[114]  Ling-Ling Wang,et al.  Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor , 2013 .

[115]  G. Lindbergh,et al.  Piezo-electrochemical effect in lithium-intercalated carbon fibres , 2013 .

[116]  Xinyu Xue,et al.  CuO/PVDF nanocomposite anode for a piezo-driven self-charging lithium battery , 2013 .

[117]  S. Bauer,et al.  Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon , 2013, Scientific Reports.

[118]  Xudong Wang,et al.  Fundamental Analysis of Piezocatalysis Process on the Surfaces of Strained Piezoelectric Materials , 2013, Scientific Reports.

[119]  Giancarlo Canavese,et al.  Nanoconfinement: an effective way to enhance PVDF piezoelectric properties. , 2013, ACS applied materials & interfaces.

[120]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[121]  P. Soroushian,et al.  Piezo-driven self-healing by electrochemical phenomena , 2013 .

[122]  Jun Zhang,et al.  Piezoelectric Bimorph Cantilever for Vibration-Producing-Hydrogen , 2012, Sensors.

[123]  Zafar Hussain Ibupoto,et al.  Piezoelectric nanogenerator based on zinc oxide nanorods grown on textile cotton fabric , 2012 .

[124]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[125]  M. Sohgawa,et al.  Ferroelectric and Piezoelectric Properties of Polycrystalline BiFeO3 Thin Films Prepared by Pulsed Laser Deposition under Magnetic Field , 2012 .

[126]  Majid Minary-Jolandan,et al.  A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires , 2012, Advanced materials.

[127]  Yan Zhang,et al.  Hybridizing energy conversion and storage in a mechanical-to-electrochemical process for self-charging power cell. , 2012, Nano letters.

[128]  Jian Shi,et al.  Piezopotential-driven redox reactions at the surface of piezoelectric materials. , 2012, Angewandte Chemie.

[129]  Huifang Xu,et al.  Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers , 2012 .

[130]  Zhenqiang Ma,et al.  Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. , 2011, Nano letters.

[131]  Zhi-Pan Liu,et al.  Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. , 2011, Journal of the American Chemical Society.

[132]  J. Gerring A case study , 2011, Technology and Society.

[133]  Zhong Lin Wang,et al.  Self-powered system with wireless data transmission. , 2011, Nano letters.

[134]  Paul A. Salvador,et al.  Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures , 2011 .

[135]  Pinliang Ying,et al.  Sputtered highly ordered TiO2 nanorod arrays and their applications as the electrode in dye-sensitized solar cells. , 2011, Journal of nanoscience and nanotechnology.

[136]  G. Rohrer,et al.  Photochemical Reactivity of Titania Films on BaTiO3 Substrates: Origin of Spatial Selectivity , 2010 .

[137]  G. Rohrer,et al.  Composition Dependence of the Photochemical reduction of Ag by Ba1−xSrxTiO3 , 2010 .

[138]  I. G. Turner,et al.  Electrically Active Bioceramics: A Review of Interfacial Responses , 2010, Annals of Biomedical Engineering.

[139]  Huifang Xu,et al.  Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water , 2010 .

[140]  Yuanhua Lin,et al.  Controlled Fabrication of BiFeO3 Uniform Microcrystals and Their Magnetic and Photocatalytic Behaviors , 2010 .

[141]  王军波,et al.  Direct-Write Piezoelectric Polymeric Nanogenerator with High Energy Conversion Efficiency , 2010 .

[142]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[143]  Sheng-Peng Sun,et al.  Preparation and photocatalytic property of a novel dumbbell-shaped ZnO microcrystal photocatalyst. , 2009, Journal of hazardous materials.

[144]  I. Belova,et al.  Limits of the ratios of tracer diffusivities for diffusion by vacancy pairs: Application to compound semiconductors , 2009 .

[145]  R. Ramesh,et al.  A Strain-Driven Morphotropic Phase Boundary in BiFeO3 , 2009, Science.

[146]  Amen Agbossou,et al.  On thermoelectric and pyroelectric energy harvesting , 2009 .

[147]  Zhong Lin Wang,et al.  Equilibrium piezoelectric potential distribution in a deformed ZnO nanowire , 2009 .

[148]  Dragan Damjanovic Comments on Origins of Enhanced Piezoelectric Properties in Ferroelectrics , 2009, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[149]  B. Gao,et al.  Two-step kinetic study on the adsorption and desorption of reactive dyes at cationic polymer/bentonite. , 2009, Journal of hazardous materials.

[150]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[151]  Qi Zhang,et al.  Impact of Zr/Ti ratio in the PZT on the photoreduction of silver nanoparticles , 2009 .

[152]  Zhiyuan Gao,et al.  Effects of piezoelectric potential on the transport characteristics of metal-ZnO nanowire-metal field effect transistor. , 2009, Journal of applied physics.

[153]  W. Jo,et al.  Perspective on the Development of Lead‐free Piezoceramics , 2009 .

[154]  A. Safari,et al.  Piezoelectric and Acoustic Materials for Transducer Applications , 2008 .

[155]  Steve Dunn,et al.  Photochemical Investigation of a Polarizable Semiconductor, Lead-Zirconate-Titanate , 2008 .

[156]  Stephen A. Wells,et al.  Hydrogen nexus in a sustainable energy future , 2008 .

[157]  G. Rohrer,et al.  The Influence of the Dipolar Field Effect on the Photochemical Reactivity of Sr2Nb2O7 and BaTiO3 Microcrystals , 2008 .

[158]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[159]  P. Cordier,et al.  Self-healing and thermoreversible rubber from supramolecular assembly , 2008, Nature.

[160]  Steve Dunn,et al.  Insights into the relationship between inherent materials properties of PZT and photochemistry for the development of nanostructured silver , 2007 .

[161]  Tao Yu,et al.  Visible‐Light Photocatalytic Properties of Weak Magnetic BiFeO3 Nanoparticles , 2007 .

[162]  M. R. Freeman,et al.  Multifunctional Nanomechanical Systems via Tunably Coupled Piezoelectric Actuation , 2007, Science.

[163]  S. Lee,et al.  Electrochemical Influence of Collagen Piezoelectric Effect in Bone Healing , 2007 .

[164]  Stanislaus S. Wong,et al.  Size-dependent magnetic properties of single-crystalline multiferroic BiFeO3 nanoparticles. , 2007, Nano letters.

[165]  Thomas R. Shrout,et al.  Lead-free piezoelectric ceramics: Alternatives for PZT? , 2007, Progress in Advanced Dielectrics.

[166]  P. Petrolekas,et al.  Kinetic studies of the liquid-phase adsorption of a reactive dye onto activated lignite , 2007 .

[167]  Min-Feng Yu,et al.  One-dimensional ferroelectric monodomain formation in single crystalline BaTiO3 nanowire , 2006 .

[168]  P. Bruce,et al.  TiO2(B) Nanowires as an Improved Anode Material for Lithium‐Ion Batteries Containing LiFePO4 or LiNi0.5Mn1.5O4 Cathodes and a Polymer Electrolyte , 2006 .

[169]  H. Ishiwara,et al.  Room temperature ferroelectric properties of Mn-substituted BiFeO3 thin films deposited on Pt electrodes using chemical solution deposition , 2006 .

[170]  A. Kaifer,et al.  Switching a molecular shuttle on and off: simple, pH-controlled pseudorotaxanes based on cucurbit[7]uril. , 2006, Chemical communications.

[171]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[172]  S. Grigoriev,et al.  Pure hydrogen production by PEM electrolysis for hydrogen energy , 2006 .

[173]  M. Wuttig,et al.  Response to Comment on "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures" , 2005, Science.

[174]  M. Blamire,et al.  Comment on "Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures" , 2005, Science.

[175]  V. Gopalan,et al.  Enhancement of Ferroelectricity in Strained BaTiO3 Thin Films , 2004, Science.

[176]  John A. Turner,et al.  Sustainable Hydrogen Production , 2004, Science.

[177]  T. Albanis,et al.  TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations A review , 2004 .

[178]  N. Ince,et al.  Individual and combined effects of ultrasound, ozone and UV irradiation: a case study with textile dyes. , 2004, Ultrasonics.

[179]  D. Salari,et al.  Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2 , 2004 .

[180]  R Ramesh,et al.  Multiferroic BaTiO3-CoFe2O4 Nanostructures , 2004, Science.

[181]  K. Rabe,et al.  Ferroelectricity at the Nanoscale: Local Polarization in Oxide Thin Films and Heterostructures , 2004, Science.

[182]  R. Ramesh,et al.  Epitaxial BiFeO3 Multiferroic Thin Film Heterostructures , 2003, Science.

[183]  M. Stylidi Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions , 2003 .

[184]  J. Herrmann,et al.  PHOTOCATALYTIC DEGRADATION OF VARIOUS TYPES OF DYES (ALIZARIN S, CROCEIN ORANGE G, METHYL RED, CONGO RED, METHYLENE BLUE) IN WATER BY UV-IRRADIATED TITANIA , 2002 .

[185]  W. Brocklesby,et al.  Differential etch rates in z-cut LiNbO3 for variable HF/HNO3 concentrations , 2002 .

[186]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[187]  C. Galindo,et al.  Photooxidation of the phenylazonaphthol AO20 on TIO2: kinetic and mechanistic investigations. , 2001, Chemosphere.

[188]  Y. Adewuyi,et al.  Sonochemistry: Environmental Science and Engineering Applications , 2001 .

[189]  G. Masters,et al.  Exploiting Wind Versus Coal , 2001, Science.

[190]  G. Rohrer,et al.  Spatial Separation of Photochemical Oxidation and Reduction Reactions on the Surface of Ferroelectric BaTiO3 , 2001 .

[191]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[192]  P. Salvador Semiconductors' Photoelectrochemistry: A Kinetic and Thermodynamic Analysis in the Light of Equilibrium and Nonequilibrium Models , 2001 .

[193]  J. Herrmann,et al.  Photocatalytic degradation pathway of methylene blue in water , 2001 .

[194]  N. Ince,et al.  Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications , 2001 .

[195]  C. Baiocchi,et al.  Photocatalytic degradation of acid blue 80 in aqueous solutions containing TiO2 suspensions. , 2001, Environmental science & technology.

[196]  Sylvie Grugeon,et al.  Nano‐Sized Transition‐Metal Oxides as Negative‐Electrode Materials for Lithium‐Ion Batteries. , 2001 .

[197]  G. Rohrer,et al.  Spatially Selective Photochemical Reduction of Silver on the Surface of Ferroelectric Barium Titanate , 2001 .

[198]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[199]  J. Kiwi,et al.  2. Photosensitized Degradation of Azo Dyes on Fe, Ti, and Al Oxides. Mechanism of Charge Transfer during the Degradation , 1999 .

[200]  I. Balcioglu,et al.  Degradation of commercial reactive dyestuffs by heterogenous and homogenous advanced oxidation processes : a comparative study , 1999 .

[201]  Dragan Damjanovic,et al.  FERROELECTRIC, DIELECTRIC AND PIEZOELECTRIC PROPERTIES OF FERROELECTRIC THIN FILMS AND CERAMICS , 1998 .

[202]  E. Dieguez,et al.  Etching effect on periodic domain structures of lithium niobate crystals , 1998 .

[203]  A J Bailey,et al.  Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. , 1998, Bone.

[204]  Tsutomu Miyasaka,et al.  Tin-Based Amorphous Oxide: A High-Capacity Lithium-Ion-Storage Material , 1997 .

[205]  Mathews,et al.  Ferroelectric Field Effect Transistor Based on Epitaxial Perovskite Heterostructures , 1997, Science.

[206]  W. L. Holstein Etching study of ferroelectric microdomains in LiNbO3 and MgO:LiNbO3 , 1997 .

[207]  H. M. Khan,et al.  Effect of temperature and light on the response of an aqueous coumarin dosimeter , 1995 .

[208]  H. Schmid,et al.  Growth, twinning and etch figures of ferroelectric/ferroelastic dendritic BiFeO3 single domain crystals , 1993 .

[209]  A. T. Moore,et al.  Biodegradation of trans-1,2-dichloroethylene by methane-utilizing bacteria in an aquifer simulator , 1989 .

[210]  J. Scrimger,et al.  Underwater noise due to rain ― open ocean measurements , 1989 .

[211]  S. Patil,et al.  Biodegradation studies of aniline and nitrobenzene in aniline plant wastewater by gas chromatography. , 1988, Environmental science & technology.

[212]  Miguel C. Junger,et al.  Sound, Structures, and Their Interaction, 2nd edition by Miguel C. Junger and David Feit , 1987 .

[213]  V. Fridkin Review of recent work on the bulk photovoltaic effect in ferro and piezoelectrics , 1984 .

[214]  Stanley M. Guralnick The Contexts of Faraday's Electrochemical Laws , 1979, Isis.

[215]  W D Metz,et al.  Wind energy: large and small systems competing. , 1977, Science.

[216]  D. Ginley,et al.  Strontium titanate photoelectrodes. Efficient photoassisted electrolysis of water at zero applied potential , 1976 .

[217]  P. S. Brody High voltage photovoltaic effect in barium titanate and lead titanate-lead zirconate ceramics , 1975 .

[218]  P. S. Brody Large polarization-dependent photovoltages in ceramic BaTiO3 + 5 wt.% CaTiO3 , 1973 .

[219]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[220]  Morris H. Shamos,et al.  Electric Enhancement of Bone Healing , 1972, Science.

[221]  H. Athenstaedt,et al.  Pyroelectric and piezoelectric behaviour of human dental hard tissues. , 1971, Archives of oral biology.

[222]  Andrew A. Marino,et al.  Piezoelectric Effect and Growth Control in Bone , 1970, Nature.

[223]  D. Berg,et al.  Energy without pollution. , 1970, Science.

[224]  L. Green Energy Needs versus Environmental Pollution: A Reconciliation? , 1967, Science.

[225]  M. Shamos,et al.  Piezoelectricity as a Fundamental Property of Biological Tissues , 1967, Nature.

[226]  K. Nassau,et al.  THE DOMAIN STRUCTURE AND ETCHING OF FERROELECTRIC LITHIUM NIOBATE , 1965 .

[227]  R. C. Macridis A review , 1963 .

[228]  R. Roth,et al.  Piezoelectric Properties of Lead Zirconate‐Lead Titanate Solid‐Solution Ceramics , 1954 .

[229]  J. van Santen,et al.  Properties of Barium Titanate in Connection with Its Crystal Structure. , 1949, Science.

[230]  R. Rhodes,et al.  Barium Titanate Crystals , 1947, Nature.

[231]  C. Aring,et al.  A CRITICAL REVIEW , 1939, Journal of neurology and psychiatry.

[232]  J. W. Richards THE CONTINUOUS ADVANCE OF ELECTROCHEMISTRY. , 1904, Science.

[233]  M. Wuttig,et al.  Epitaxial BiFeO 3 Multiferroic Thin Film Heterostructures , 2019 .

[234]  J. Wu,et al.  Single- and few-layers MoS2 nanocomposite as piezo-catalyst in dark and self-powered active sensor , 2017 .

[235]  Ya Xiong,et al.  Enhancement effect in the piezoelectric degradation of organic pollutants by piezo-Fenton process , 2017 .

[236]  Xiaoxiang Xu,et al.  Photocatalytic hydrogen production over solid solutions between BiFeO3 and SrTiO3 , 2017 .

[237]  Mengyuan Li,et al.  The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride). , 2016, Nature materials.

[238]  Christopher R. Bowen,et al.  Piezoelectric and ferroelectric materials and structures for energy harvesting applications , 2014 .

[239]  Leandro Lorenzelli,et al.  POSFET Tactile Sensing Arrays using CMOS Technology , 2013 .

[240]  Tobias Kretschmer,et al.  SURVEY OF LITERATURE , 2012 .

[241]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[242]  Alexander V. Goltsev,et al.  Piezoelectricity and Crystal Symmetry , 2008 .

[243]  Candace K. Chan,et al.  High-performance lithium battery anodes using silicon nanowires. , 2008, Nature nanotechnology.

[244]  Z. Ren,et al.  Visible-Light Photocatalytic Properties of Weak Magnetic BiFeO 3 Nanoparticles , 2007 .

[245]  Chuncheng Chen,et al.  Photocatalysis by titanium dioxide and polyoxometalate/TiO2 cocatalysts. Intermediates and mechanistic study. , 2004, Environmental science & technology.

[246]  Satishchandra Ogale,et al.  Multiferroic BaTiO 3 -CoFe 2 O 4 Nanostructures , 2004 .

[247]  G. Masters,et al.  Energy. Exploiting wind versus coal. , 2001, Science.

[248]  Debabrata Das,et al.  Hydrogen production by biological processes: a survey of literature , 2001 .

[249]  A. Sombra,et al.  On the piezoelectricity of collagen–chitosan films , 2001 .

[250]  Hideo Hosono,et al.  Mechano-catalytic overall water splitting , 1998 .

[251]  V. Klyatskin,et al.  Generation of a Low Frequency Acoustical Noise in the Layered Ocean by the Surface Sources , 1993 .

[252]  Michael Grätzel,et al.  Photochemical cleavage of water by photocatalysis , 1981, Nature.

[253]  A. Bard,et al.  The Concept of Fermi Level Pinning at Semiconductor/Liquid Junctions. Consequences for Energy Conversion Efficiency and Selection of Useful Solution Redox Couples in Solar Devices , 1980 .

[254]  D. Goldenberg,et al.  Electric enhancement of bone healing. , 1972, Science.