Decision algorithms for modelling, optimal control and verification of probabilistic systems

Markov Decision Processes (MDPs) constitute a mathematical framework for modelling systems featuring both probabilistic and nondeterministic behaviour. They are widely used to solve sequential decision making problems and applied successfully in operations research, artificial intelligence, and stochastic control theory, and have been extended conservatively to the model of probabilistic automata in the context of concurrent probabilistic systems. However, when modeling a physical system they suffer from several limitations. One of the most important is the inherent loss of precision that is introduced by measurement errors and discretization artifacts which necessarily happen due to incomplete knowledge about the system behavior. As a result, the true probability distribution for transitions is in most cases an uncertain value, determined by either external parameters or confidence intervals. Interval Markov decision processes (IMDPs) generalize classical MDPs by having interval-valued transition probabilities. They provide a powerful modelling tool for probabilistic systems with an additional variation or uncertainty that reflects the absence of precise knowledge concerning transition probabilities. In this dissertation, we focus on decision algorithms for modelling and performance evaluation of such probabilistic systems leveraging techniques from mathematical optimization. From a modelling viewpoint, we address probabilistic bisimulations to reduce the size of the system models while preserving the logical properties they satisfy. We also discuss the key ingredients to construct systems by composing them out of smaller components running in parallel. Furthermore, we introduce a novel stochastic model, Uncertain weighted Markov Decision Processes (UwMDPs), so as to capture quantities like preferences or priorities in a nondeterministic scenario with uncertainties. This model is close to the model of IMDPs but more convenient to work with in the context of bisimulation minimization. From a performance evaluation perspective, we consider the problem of multi-objective robust strategy synthesis for IMDPs, where the aim is to find a robust strategy that guarantees the satisfaction of multiple properties at the same time in face of the transition probability uncertainty. In this respect, we discuss the computational complexity of the problem and present a value iteration-based decision algorithm to approximate the Pareto set of achievable optimal points. Moreover, we consider the problem of computing maximal/minimal reward-bounded reachability probabilities on UwMDPs, for which we present an efficient algorithm running in pseudo-polynomial time. We demonstrate the practical effectiveness of our proposed approaches by applying them to a collection of real-world case studies using several prototypical tools.

[1]  Scott A. Smolka,et al.  CCS expressions, finite state processes, and three problems of equivalence , 1983, PODC '83.

[2]  Herminia I. Calvete Network simplex algorithm for the general equal flow problem , 2003, Eur. J. Oper. Res..

[3]  Joost-Pieter Katoen,et al.  The Probabilistic Model Checking Landscape* , 2016, 2016 31st Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[4]  Daniel Lehmann,et al.  On the advantages of free choice: a symmetric and fully distributed solution to the dining philosophers problem , 1981, POPL '81.

[5]  M. K. Ghosh Markov decision processes with multiple costs , 1990 .

[6]  Marta Z. Kwiatkowska,et al.  Compositional Controller Synthesis for Stochastic Games , 2014, CONCUR.

[7]  R. Helgason,et al.  Chapter 2 Primal simplex algorithms for minimum cost network flows , 1995 .

[8]  R. Segala,et al.  Automatic Verification of Real-Time Systems with Discrete Probability Distributions , 1999, ARTS.

[9]  Kim G. Larsen,et al.  Decision Problems for Interval Markov Chains , 2011, LATA.

[10]  K. Subramani,et al.  On the Complexities of Selected Satisfiability and Equivalence Queries over Boolean Formulas and Inclusion Queries over Hulls , 2009, Adv. Decis. Sci..

[11]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[12]  Bernd Becker,et al.  Compositional Dependability Evaluation for STATEMATE , 2009, IEEE Transactions on Software Engineering.

[13]  Robert E. Tarjan,et al.  Three Partition Refinement Algorithms , 1987, SIAM J. Comput..

[14]  Amir Pnueli,et al.  The temporal logic of programs , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[15]  L. Ghaoui,et al.  Robust model predictive control through adjustable variables: an application to path planning , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[16]  E. Allen Emerson,et al.  Temporal and Modal Logic , 1991, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics.

[17]  Nadia Tawbi,et al.  Specification and Verification of the PowerScale , 2022 .

[18]  Krishnendu Chatterjee,et al.  Model-Checking omega-Regular Properties of Interval Markov Chains , 2008, FoSSaCS.

[19]  Holger Hermanns,et al.  Deciding probabilistic automata weak bisimulation: theory and practice , 2016, Formal Aspects of Computing.

[20]  Roberto Segala,et al.  Decision Algorithms for Probabilistic Bisimulation , 2002, CONCUR.

[21]  Peter Buchholz,et al.  Multi-Objective Approaches to Markov Decision Processes with Uncertain Transition Parameters , 2017, VALUETOOLS.

[22]  Roberto Segala,et al.  Modeling and verification of randomized distributed real-time systems , 1996 .

[23]  Insup Lee,et al.  Weak Bisimulation for Probabilistic Systems , 2000, CONCUR.

[24]  Sebastian Junges,et al.  JANI: Quantitative Model and Tool Interaction , 2017, TACAS.

[25]  K. Wakuta,et al.  Solution procedures for multi-objective markov decision processes , 1998 .

[26]  Joost-Pieter Katoen,et al.  Formal correctness, safety, dependability, and performance analysis of a satellite , 2012, 2012 34th International Conference on Software Engineering (ICSE).

[27]  Bengt Jonsson,et al.  A logic for reasoning about time and reliability , 1990, Formal Aspects of Computing.

[28]  Joost-Pieter Katoen,et al.  Compositional Abstraction for Stochastic Systems , 2009, FORMATS.

[29]  Holger Hermanns,et al.  Exploiting Robust Optimization for Interval Probabilistic Bisimulation , 2016, QEST.

[30]  K. Subramani,et al.  Compositional Bisimulation Minimization for Interval Markov Decision Processes , 2016, LATA.

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  Holger Hermanns,et al.  Reward-Bounded Reachability Probability for Uncertain Weighted MDPs , 2016, VMCAI.

[33]  David G. Luenberger,et al.  Linear and nonlinear programming , 1984 .

[34]  Lijun Zhang,et al.  PARAM: A Model Checker for Parametric Markov Models , 2010, CAV.

[35]  Christel Baier,et al.  Controller Synthesis for Probabilistic Systems , 2004, IFIP TCS.

[36]  Lijun Zhang,et al.  On Probabilistic Automata in Continuous Time , 2010, 2010 25th Annual IEEE Symposium on Logic in Computer Science.

[37]  Benoit Delahaye,et al.  Consistency in Parametric Interval Probabilistic Timed Automata , 2016, 2016 23rd International Symposium on Temporal Representation and Reasoning (TIME).

[38]  Lijun Zhang,et al.  Synthesis for PCTL in Parametric Markov Decision Processes , 2011, NASA Formal Methods.

[39]  Willem K. Brauers,et al.  Optimization Methods for a Stakeholder Society: A Revolution in Economic Thinking by Multi-objective Optimization , 2003 .

[40]  Holger Hermanns,et al.  Interactive Markov Chains , 2002, Lecture Notes in Computer Science.

[41]  Gert Vegter,et al.  In handbook of discrete and computational geometry , 1997 .

[42]  Laurent Mounier,et al.  Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems , 2000, TACAS.

[43]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[44]  George B Dantzig,et al.  ON THE SOLUTION OF TWO-STAGE LINEAR PROGRAMS UNDER UNCERTAINTY. NOTES ON LINEAR PROGRAMMING AND EXTENSIONS. PART 55 , 1961 .

[45]  Kousha Etessami,et al.  Multi-objective Model Checking of Markov Decision Processes , 2007, TACAS.

[46]  Mickael Randour,et al.  Percentile queries in multi-dimensional Markov decision processes , 2017, Formal Methods Syst. Des..

[47]  Holger Hermanns,et al.  Towards Performance Prediction of Compositional Models in Industrial GALS Designs , 2009, CAV.

[48]  J. Ben Atkinson,et al.  Modeling and Analysis of Stochastic Systems , 1996 .

[49]  R. Shamir The Efficiency of the Simplex Method: A Survey , 1987 .

[50]  R. Howard,et al.  Dynamic Probabilistic Systems, Volume I: Markov Models and Volume II: Semi- Markov and Decision Processes. , 1972 .

[51]  Jan Krcál,et al.  Probabilistic Bisimulations for PCTL Model Checking of Interval MDPs (extended version) , 2014, SynCoP.

[52]  Sheldon H. Jacobson,et al.  A Network Simplex Algorithm for the Equal Flow Problem on a Generalized Network , 2013, INFORMS J. Comput..

[53]  Marta Z. Kwiatkowska,et al.  Pareto Curves for Probabilistic Model Checking , 2012, ATVA.

[54]  Kim Guldstrand Larsen,et al.  Specification and refinement of probabilistic processes , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[55]  Maurice Herlihy,et al.  Fast Randomized Consensus Using Shared Memory , 1990, J. Algorithms.

[56]  Vahid Hashemi Towards a combinatorial approach for undiscounted MDPs: student research abstract , 2016, SAC.

[57]  Thomas A. Henzinger,et al.  Alternating Refinement Relations , 1998, CONCUR.

[58]  Nicolás Wolovick,et al.  A Characterization of Meaningful Schedulers for Continuous-Time Markov Decision Processes , 2006, FORMATS.

[59]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[60]  Ufuk Topcu,et al.  Robust control of uncertain Markov Decision Processes with temporal logic specifications , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[61]  Albert R. Meyer,et al.  Word problems requiring exponential time(Preliminary Report) , 1973, STOC.

[62]  John N. Tsitsiklis,et al.  Introduction to linear optimization , 1997, Athena scientific optimization and computation series.

[63]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[64]  Hans A. Hansson Time and probability in formal design of distributed systems , 1991, DoCS.

[65]  Kim G. Larsen,et al.  New Results on Abstract Probabilistic Automata , 2011, 2011 Eleventh International Conference on Application of Concurrency to System Design.

[66]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[67]  Joseph Sifakis,et al.  Specification and verification of concurrent systems in CESAR , 1982, Symposium on Programming.

[68]  J. K. Satia,et al.  Markovian Decision Processes with Uncertain Transition Probabilities , 1973, Oper. Res..

[69]  Holger Hermanns,et al.  Deciding Probabilistic Automata Weak Bisimulation in Polynomial Time , 2012, FSTTCS.

[70]  Lydia E. Kavraki,et al.  Asymptotically Optimal Stochastic Motion Planning with Temporal Goals , 2014, WAFR.

[71]  K. Subramani,et al.  On quantified linear implications , 2014, Annals of Mathematics and Artificial Intelligence.

[72]  Martin L. Puterman,et al.  Markov Decision Processes: Discrete Stochastic Dynamic Programming , 1994 .

[73]  Marta Z. Kwiatkowska,et al.  Stochastic Transition Systems for Continuous State Spaces and Non-determinism , 2005, FoSSaCS.

[74]  V. Klee,et al.  HOW GOOD IS THE SIMPLEX ALGORITHM , 1970 .

[75]  W. J. Thron,et al.  Continued Fractions: Analytic Theory and Applications , 1984 .

[76]  Laurent El Ghaoui,et al.  Robust Optimization , 2021, ICORES.

[77]  Roberto Segala Probability and Nondeterminism in Operational Models of Concurrency , 2006, CONCUR.

[78]  Peter A. Beling,et al.  Exact Algorithms for Linear Programming over Algebraic Extensions , 2001, Algorithmica.

[79]  Di Wu,et al.  Reachability analysis of uncertain systems using bounded-parameter Markov decision processes , 2008, Artif. Intell..

[80]  Holger Hermanns,et al.  Aggregation Ordering for Massively Compositional Models , 2010, 2010 10th International Conference on Application of Concurrency to System Design.

[81]  D. White Multi-objective infinite-horizon discounted Markov decision processes , 1982 .

[82]  David L. Roberts,et al.  Autonomous nondeterministic tour guides: improving quality of experience with TTD-MDPs , 2007, AAMAS '07.

[83]  Constantine Caramanis,et al.  Theory and Applications of Robust Optimization , 2010, SIAM Rev..

[84]  R. Bellman A Markovian Decision Process , 1957 .

[85]  Marco Ajmone Marsan,et al.  A class of generalized stochastic Petri nets for the performance evaluation of multiprocessor systems , 1984, TOCS.

[86]  Calin Belta,et al.  Motion planning and control from temporal logic specifications with probabilistic satisfaction guarantees , 2010, 2010 IEEE International Conference on Robotics and Automation.

[87]  Nancy A. Lynch,et al.  Probabilistic Simulations for Probabilistic Processes , 1994, Nord. J. Comput..

[88]  David K. Smith Network Flows: Theory, Algorithms, and Applications , 1994 .

[89]  Aviezri S. Fraenkel,et al.  Computing a Perfect Strategy for n*n Chess Requires Time Exponential in N , 1981, ICALP.

[90]  Taolue Chen,et al.  On the complexity of model checking interval-valued discrete time Markov chains , 2013, Inf. Process. Lett..

[91]  Pierfrancesco Bellini,et al.  Temporal logics for real-time system specification , 2000, CSUR.

[92]  Reducing uncertainty in wireless sensor networks Network inspection and collision-free medium access , 2009 .

[93]  Patrice Perny,et al.  Approximation of Lorenz-Optimal Solutions in Multiobjective Markov Decision Processes , 2013, AAAI.

[94]  Leslie Lamport,et al.  What Good is Temporal Logic? , 1983, IFIP Congress.

[95]  Mariëlle Stoelinga,et al.  A Rigorous, Compositional, and Extensible Framework for Dynamic Fault Tree Analysis , 2010, IEEE Transactions on Dependable and Secure Computing.

[96]  Robert Givan,et al.  Bounded Parameter Markov Decision Processes , 1997, ECP.

[97]  Andrew V. Goldberg,et al.  Network Flow Algorithm , 1989 .

[98]  Garud Iyengar,et al.  Robust Dynamic Programming , 2005, Math. Oper. Res..

[99]  Wenbo Mao,et al.  Modern Cryptography: Theory and Practice , 2003 .

[100]  Nagata Furukawa,et al.  Characterization of Optimal Policies in Vector-Valued Markovian Decision Processes , 1980, Math. Oper. Res..

[101]  Christel Baier,et al.  Efficient computation of time-bounded reachability probabilities in uniform continuous-time Markov decision processes , 2005, Theor. Comput. Sci..

[102]  Holger Hermanns,et al.  Polynomial time decision algorithms for probabilistic automata , 2015, Inf. Comput..

[103]  Goran Frehse PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech , 2005, HSCC.

[104]  Roberto Segala,et al.  Axiomatization of trace semantics for stochastic nondeterministic processes , 2004, First International Conference on the Quantitative Evaluation of Systems, 2004. QEST 2004. Proceedings..

[105]  Edmund M. Clarke,et al.  Design and Synthesis of Synchronization Skeletons Using Branching-Time Temporal Logic , 1981, Logic of Programs.

[106]  Laurent El Ghaoui,et al.  Robust Control of Markov Decision Processes with Uncertain Transition Matrices , 2005, Oper. Res..

[107]  Arkadi Nemirovski,et al.  Robust solutions of uncertain linear programs , 1999, Oper. Res. Lett..

[108]  Taolue Chen,et al.  On Stochastic Games with Multiple Objectives , 2013, MFCS.

[109]  Andrew Hinton,et al.  PRISM: A Tool for Automatic Verification of Probabilistic Systems , 2006, TACAS.

[110]  Holger Hermanns,et al.  Compositional Reasoning for Interval Markov Decision Processes , 2016, ArXiv.

[111]  Sebastian Junges,et al.  PROPhESY: A PRObabilistic ParamEter SYnthesis Tool , 2015, CAV.

[112]  Lev V. Utkin,et al.  Interval-Valued Finite Markov Chains , 2002, Reliab. Comput..

[113]  P. Simin Pulat A decomposition algorithm to determine the maximum flow in a generalized network , 1989, Comput. Oper. Res..

[114]  Kim G. Larsen,et al.  State-of-the-art tools and techniques for quantitative modeling and analysis of embedded systems , 2012, 2012 Design, Automation & Test in Europe Conference & Exhibition (DATE).

[115]  William J. Stewart,et al.  Introduction to the numerical solution of Markov Chains , 1994 .

[116]  Joost-Pieter Katoen,et al.  Automated compositional Markov chain generation for a plain-old telephone system , 2000, Sci. Comput. Program..

[117]  Marta Z. Kwiatkowska,et al.  Automated Verification Techniques for Probabilistic Systems , 2011, SFM.

[118]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[119]  M. I. Henig Vector-Valued Dynamic Programming , 1983 .

[120]  Thomas A. Henzinger,et al.  Markov Decision Processes with Multiple Objectives , 2006, STACS.

[121]  Lijun Zhang,et al.  A Semantics for Every GSPN , 2013, Petri Nets.

[122]  Vahid Hashemi Reformulation of the linear program for completely ergodic MDPs with average cost criteria , 2017, Optim. Lett..

[123]  Johan Löfberg,et al.  Automatic robust convex programming , 2012, Optim. Methods Softw..

[124]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[125]  Laure Petrucci,et al.  Parameter Synthesis for Parametric Interval Markov Chains , 2016, VMCAI.

[126]  Joost-Pieter Katoen,et al.  Discrete-Time Rewards Model-Checked , 2003, FORMATS.

[127]  Ling Cheung,et al.  A testing scenario for probabilistic processes , 2007, JACM.

[128]  A. Ben-Tal,et al.  Adjustable robust solutions of uncertain linear programs , 2004, Math. Program..

[129]  Bernhard Steffen,et al.  Compositional minimisation of finite state systems using interface specifications , 1996, Formal Aspects of Computing.

[130]  Lydia E. Kavraki,et al.  Optimal and Efficient Stochastic Motion Planning in Partially-Known Environments , 2014, AAAI.

[131]  Erik P. de Vink,et al.  Probabilistic Automata: System Types, Parallel Composition and Comparison , 2004, Validation of Stochastic Systems.

[132]  Yuxin Deng,et al.  Axiomatisations and Types for Probabilistic and Mobile Processes. (Axiomatisations et types pour des processus probabilistes et mobiles) , 2005 .

[133]  R. Bellman,et al.  Dynamic Programming and Markov Processes , 1960 .

[134]  Alberto Alessandro Angelo Puggelli,et al.  Formal Techniques for the Verification and Optimal Control of Probabilistic Systems in the Presence of Modeling Uncertainties , 2014 .

[135]  Kim G. Larsen,et al.  Abstract Probabilistic Automata , 2011, VMCAI.

[136]  Patrice Perny,et al.  A Compromise Programming Approach to multiobjective Markov Decision Processes , 2011, Int. J. Inf. Technol. Decis. Mak..

[137]  Marta Z. Kwiatkowska,et al.  Automated Verification of a Randomized Distributed Consensus Protocol Using Cadence SMV and PRISM , 2001, CAV.

[138]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[139]  Joost-Pieter Katoen,et al.  Bisimulation Minimisation Mostly Speeds Up Probabilistic Model Checking , 2007, TACAS.

[140]  Hongfei Fu,et al.  Maximal Cost-Bounded Reachability Probability on Continuous-Time Markov Decision Processes , 2013, FoSSaCS.

[141]  Mahesh Viswanathan,et al.  Model-Checking Markov Chains in the Presence of Uncertainties , 2006, TACAS.

[142]  Marta Z. Kwiatkowska,et al.  Stochastic Model Checking , 2007, SFM.

[143]  Hanif D. Sherali,et al.  Linear Programming and Network Flows , 1977 .

[144]  Yinyu Ye,et al.  The Simplex and Policy-Iteration Methods Are Strongly Polynomial for the Markov Decision Problem with a Fixed Discount Rate , 2011, Math. Oper. Res..

[145]  Donald R. Chand,et al.  An Algorithm for Convex Polytopes , 1970, JACM.

[146]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[147]  Alberto L. Sangiovanni-Vincentelli,et al.  Polynomial-Time Verification of PCTL Properties of MDPs with Convex Uncertainties , 2013, CAV.

[148]  Lijun Zhang,et al.  Concurrency and Composition in a Stochastic World , 2010, CONCUR.

[149]  James Worrell,et al.  LTL Model Checking of Interval Markov Chains , 2013, TACAS.

[150]  Benoît Delahaye,et al.  Reachability in Parametric Interval Markov Chains Using Constraints , 2017, QEST.

[151]  Andrea Bianco,et al.  Model Checking of Probabalistic and Nondeterministic Systems , 1995, FSTTCS.

[152]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[153]  Yi Li,et al.  iscasMc: A Web-Based Probabilistic Model Checker , 2014, FM.

[154]  Wang Yi,et al.  Algebraic Reasoning for Real-Time Probabilistic Processes with Uncertain Information , 1994, FTRTFT.

[155]  Ronald A. Howard,et al.  Dynamic Probabilistic Systems , 1971 .

[156]  Roberto Gorrieri,et al.  Extended Markovian Process Algebra , 1996, CONCUR.

[157]  Hongyang Qu,et al.  Quantitative Multi-objective Verification for Probabilistic Systems , 2011, TACAS.

[158]  Chelsea C. White,et al.  Markov Decision Processes with Imprecise Transition Probabilities , 1994, Oper. Res..

[159]  Holger Hermanns,et al.  Multi-objective Robust Strategy Synthesis for Interval Markov Decision Processes , 2017, QEST.

[160]  Lydia E. Kavraki,et al.  Fast stochastic motion planning with optimality guarantees using local policy reconfiguration , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[161]  Abdel-Illah Mouaddib Multi-objective decision-theoretic path planning , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[162]  Christian Georg Eisentraut,et al.  Principles of Markov automata , 2017 .

[163]  Frédéric Lang,et al.  Smart Reduction , 2011, FASE.

[164]  Shang-Hua Teng,et al.  Electrical flows, laplacian systems, and faster approximation of maximum flow in undirected graphs , 2010, STOC '11.

[165]  Willem Hagemann Reachability Analysis of Hybrid Systems Using Symbolic Orthogonal Projections , 2014, CAV.

[166]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[167]  Martin Leucker,et al.  Don't Know in Probabilistic Systems , 2006, SPIN.

[168]  Holger Hermanns,et al.  Cost Preserving Bisimulations for Probabilistic Automata , 2014, Log. Methods Comput. Sci..

[169]  Christel Baier,et al.  Model-Checking Algorithms for Continuous-Time Markov Chains , 2002, IEEE Trans. Software Eng..

[170]  Marc Goerigk,et al.  ROPI—a robust optimization programming interface for C++ , 2014, Optim. Methods Softw..

[171]  Mihalis Yannakakis,et al.  The complexity of probabilistic verification , 1995, JACM.

[172]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[173]  Orhan Feyzioglu,et al.  A network simplex based algorithm for the minimum cost proportional flow problem with disconnected subnetworks , 2012, Optim. Lett..

[174]  David K. Smith,et al.  Dynamic Programming and Optimal Control. Volume 1 , 1996 .

[175]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[176]  Joseph Naor,et al.  Simple and Fast Algorithms for Linear and Integer Programs With Two Variables per Inequality , 1994, SIAM J. Comput..

[177]  L. E. Clarke,et al.  Probability and Measure , 1980 .

[178]  Alberto L. Sangiovanni-Vincentelli,et al.  Robust strategy synthesis for probabilistic systems applied to risk-limiting renewable-energy pricing , 2014, 2014 International Conference on Embedded Software (EMSOFT).

[179]  Hans Raj Tiwary On Computing the Shadows and Slices of Polytopes , 2008, ArXiv.

[180]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[181]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[182]  Moshe Y. Vardi Automatic verification of probabilistic concurrent finite state programs , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[183]  Khaled M. Elbassioni,et al.  Polynomial-Time Alternating Probabilistic Bisimulation for Interval MDPs , 2017, SETTA.

[184]  Morteza Lahijanian,et al.  Specification revision for Markov decision processes with optimal trade-off , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[185]  Bengt Jonsson,et al.  A calculus for communicating systems with time and probabilities , 1990, [1990] Proceedings 11th Real-Time Systems Symposium.

[186]  Daniel Gebler,et al.  Computing Behavioral Relations for Probabilistic Concurrent Systems , 2012, ROCKS.

[187]  Jasbir S. Arora,et al.  Survey of multi-objective optimization methods for engineering , 2004 .

[188]  Joseph Y. Halpern,et al.  “Sometimes” and “not never” revisited: on branching versus linear time temporal logic , 1986, JACM.

[189]  Nikolaj Bjørner,et al.  Z3: An Efficient SMT Solver , 2008, TACAS.

[190]  Lijun Zhang,et al.  The Quest for Minimal Quotients for Probabilistic Automata , 2013, TACAS.

[191]  Hongyang Qu,et al.  Compositional probabilistic verification through multi-objective model checking , 2013, Inf. Comput..

[192]  Antonín Kucera,et al.  On the Controller Synthesis for Finite-State Markov Decision Processes , 2005, Fundam. Informaticae.

[193]  Christel Baier,et al.  Principles of model checking , 2008 .

[194]  Sheldon H. Jacobson,et al.  An algorithm to solve the proportional network flow problem , 2014, Optim. Lett..

[195]  Holger Hermanns,et al.  On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation , 2013, Electron. Commun. Eur. Assoc. Softw. Sci. Technol..