Counterexample-Guided Strategy Improvement for POMDPs Using Recurrent Neural Networks

We study strategy synthesis for partially observable Markov decision processes (POMDPs). The particular problem is to determine strategies that provably adhere to (probabilistic) temporal logic constraints. This problem is computationally intractable and theoretically hard. We propose a novel method that combines techniques from machine learning and formal verification. First, we train a recurrent neural network (RNN) to encode POMDP strategies. The RNN accounts for memory-based decisions without the need to expand the full belief space of a POMDP. Secondly, we restrict the RNN-based strategy to represent a finite-memory strategy and implement it on a specific POMDP. For the resulting finite Markov chain, efficient formal verification techniques provide provable guarantees against temporal logic specifications. If the specification is not satisfied, counterexamples supply diagnostic information. We use this information to improve the strategy by iteratively training the RNN. Numerical experiments show that the proposed method elevates the state of the art in POMDP solving by up to three orders of magnitude in terms of solving times and model sizes.

[1]  Mykel J. Kochenderfer,et al.  Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks , 2017, CAV.

[2]  Robert M Thrall,et al.  Mathematics of Operations Research. , 1978 .

[3]  B. Becker,et al.  Finite-State Controllers of POMDPs using Parameter Synthesis , 2018, UAI.

[4]  Petter Nilsson,et al.  Temporal Logic Control of POMDPs via Label-based Stochastic Simulation Relations , 2018, ADHS.

[5]  Demis Hassabis,et al.  Neural Episodic Control , 2017, ICML.

[6]  Christel Baier,et al.  Principles of model checking , 2008 .

[7]  M. V. Rossum,et al.  In Neural Computation , 2022 .

[8]  Razvan Pascanu,et al.  Relational recurrent neural networks , 2018, NeurIPS.

[9]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[10]  Jürgen Schmidhuber,et al.  Solving Deep Memory POMDPs with Recurrent Policy Gradients , 2007, ICANN.

[11]  Nils Jansen,et al.  Minimal counterexamples for linear-time probabilistic verification , 2014, Theor. Comput. Sci..

[12]  Ruslan Salakhutdinov,et al.  Neural Map: Structured Memory for Deep Reinforcement Learning , 2017, ICLR.

[13]  Andrew Pitts,et al.  Computation Theory , 1985, Lecture Notes in Computer Science.

[14]  Sebastian Junges,et al.  Permissive Finite-State Controllers of POMDPs using Parameter Synthesis , 2017, ArXiv.

[15]  Krishnendu Chatterjee,et al.  Qualitative analysis of POMDPs with temporal logic specifications for robotics applications , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[16]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[17]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[18]  Yishay Mansour,et al.  Approximate Planning in Large POMDPs via Reusable Trajectories , 1999, NIPS.

[19]  John N. Tsitsiklis,et al.  The Complexity of Markov Decision Processes , 1987, Math. Oper. Res..

[20]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[21]  Yishay Mansour,et al.  Policy Gradient Methods for Reinforcement Learning with Function Approximation , 1999, NIPS.

[22]  Krishnendu Chatterjee,et al.  What is decidable about partially observable Markov decision processes with ω-regular objectives , 2013, J. Comput. Syst. Sci..

[23]  David Barber,et al.  On the Computational Complexity of Stochastic Controller Optimization in POMDPs , 2011, TOCT.

[24]  Marta Z. Kwiatkowska,et al.  PRISM 4.0: Verification of Probabilistic Real-Time Systems , 2011, CAV.

[25]  Fred Kröger,et al.  Temporal Logic of Programs , 1987, EATCS Monographs on Theoretical Computer Science.

[26]  Sebastian Junges,et al.  A Storm is Coming: A Modern Probabilistic Model Checker , 2017, CAV.

[27]  J. van Leeuwen,et al.  Theoretical Computer Science , 2003, Lecture Notes in Computer Science.

[28]  Leslie Pack Kaelbling,et al.  Planning and Acting in Partially Observable Stochastic Domains , 1998, Artif. Intell..

[29]  Matthijs T. J. Spaan,et al.  Accelerated Vector Pruning for Optimal POMDP Solvers , 2017, AAAI.

[30]  Ufuk Topcu,et al.  Environment-Independent Task Specifications via GLTL , 2017, ArXiv.

[31]  Shlomo Zilberstein,et al.  Optimizing fixed-size stochastic controllers for POMDPs and decentralized POMDPs , 2010, Autonomous Agents and Multi-Agent Systems.

[32]  Gethin Norman,et al.  Verification and control of partially observable probabilistic systems , 2017, Real-Time Systems.

[33]  Lijun Zhang,et al.  Probabilistic Reachability for Parametric Markov Models , 2009, SPIN.

[34]  Anne Condon,et al.  On the Undecidability of Probabilistic Planning and Infinite-Horizon Partially Observable Markov Decision Problems , 1999, AAAI/IAAI.

[35]  Sebastian Junges,et al.  Synthesis in pMDPs: A Tale of 1001 Parameters , 2018, ATVA.

[36]  Peter Stone,et al.  Deep Recurrent Q-Learning for Partially Observable MDPs , 2015, AAAI Fall Symposia.

[37]  Kee-Eung Kim,et al.  Learning Finite-State Controllers for Partially Observable Environments , 1999, UAI.

[38]  Joel Veness,et al.  Monte-Carlo Planning in Large POMDPs , 2010, NIPS.