Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space - with Fast Poi
暂无分享,去创建一个
[1] M. Karavelas. A robust and efficient implementation for the segment Voronoi diagram , 2004 .
[2] Ketan Mulmuley. A Fast Planar Partition Algorithm, I , 1990, J. Symb. Comput..
[3] Pascal Frey,et al. MEDIT : An interactive Mesh visualization Software , 2001 .
[4] Raimund Seidel,et al. Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..
[5] Jur P. van den Berg,et al. The visibility--voronoi complex and its applications , 2005, EuroCG.
[6] Matthew Harold Austern,et al. Generic programming and the STL , 1998 .
[7] Hazel Everett,et al. The Voronoi diagram of three arbitrary lines in R3 , 2009 .
[8] Deok-Soo Kim,et al. The beta-Shape and beta-Complex for Analysis of Molecular Structures , 2008, Generalized Voronoi Diagram.
[9] Gershon Elber,et al. Computing the Voronoi cells of planes, spheres and cylinders in R3 , 2008, SPM '08.
[10] Dan Halperin,et al. Approximating the pathway axis and the persistence diagram of a collection of balls in 3-space , 2008, SCG '08.
[11] Ioannis Z. Emiris,et al. The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.
[12] James U. Korein,et al. Robotics , 2018, IBM Syst. J..
[13] Hazel Everett,et al. The Voronoi Diagram of Three Lines , 2007, SCG '07.
[14] Olivier Devillers. Improved incremental randomized Delaunay triangulation , 1998, SCG '98.
[15] Ioannis Z. Emiris,et al. The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..
[16] Franz Aurenhammer,et al. Voronoi Diagrams , 2000, Handbook of Computational Geometry.
[17] Mariette Yvinec,et al. Feature preserving Delaunay mesh generation from 3D multi‐material images , 2009, Comput. Graph. Forum.
[18] Vladlen Koltun. Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[19] Elmar Schömer,et al. An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves * , 2005 .
[20] Elmar Schömer,et al. Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics , 2007, ESA.
[21] Mariette Yvinec,et al. Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.
[22] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[23] Dinesh Manocha,et al. Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..
[24] Luc Devroye,et al. Expected time analysis for Delaunay point location , 2004, Comput. Geom..
[25] Victor J. Milenkovic,et al. Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.
[26] Jean-Daniel Boissonnat,et al. Effective computational geometry for curves and surfaces , 2006 .
[27] HalperinDan,et al. An experimental study of point location in planar arrangements in CGAL , 2009 .
[28] Micha Sharir,et al. The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..
[29] Jean-Daniel Boissonnat,et al. Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.
[30] Micha Sharir,et al. 3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..
[31] Dan Halperin,et al. An experimental study of point location in planar arrangements in CGAL , 2009, JEAL.