Constructing the Exact Voronoi Diagram of Arbitrary Lines in Three-Dimensional Space - with Fast Poi

We introduce a new, efficient, and complete algorithm, and its exact implementation, to compute the Voronoi diagram of lines in space. This is a major milestone towards the robust construction of the Voronoi diagram of polyhedra. As we follow the exact geometric-computation paradigm, it is guaranteed that we always compute the mathematically correct result. The algorithm is complete in the sense that it can handle all configurations, in particular all degenerate ones. The algorithm requires $O(n^{3+\varepsilon})$ time and space, where $n$ is the number of lines. The Voronoi diagram is represented by a data structure that permits answering point-location queries in $O(\log^2 n)$ expected time. The implementation employs the CGAL packages for constructing arrangements and lower envelopes on parametric surfaces together with advanced algebraic tools. Supplementary material and in particular the prototypical code of our implementation can be found in the website: http://acg.cs.tau.ac.il/projects/internal-projects/3d-lines-vor/project-page.

[1]  M. Karavelas A robust and efficient implementation for the segment Voronoi diagram , 2004 .

[2]  Ketan Mulmuley A Fast Planar Partition Algorithm, I , 1990, J. Symb. Comput..

[3]  Pascal Frey,et al.  MEDIT : An interactive Mesh visualization Software , 2001 .

[4]  Raimund Seidel,et al.  Voronoi diagrams and arrangements , 1986, Discret. Comput. Geom..

[5]  Jur P. van den Berg,et al.  The visibility--voronoi complex and its applications , 2005, EuroCG.

[6]  Matthew Harold Austern,et al.  Generic programming and the STL , 1998 .

[7]  Hazel Everett,et al.  The Voronoi diagram of three arbitrary lines in R3 , 2009 .

[8]  Deok-Soo Kim,et al.  The beta-Shape and beta-Complex for Analysis of Molecular Structures , 2008, Generalized Voronoi Diagram.

[9]  Gershon Elber,et al.  Computing the Voronoi cells of planes, spheres and cylinders in R3 , 2008, SPM '08.

[10]  Dan Halperin,et al.  Approximating the pathway axis and the persistence diagram of a collection of balls in 3-space , 2008, SCG '08.

[11]  Ioannis Z. Emiris,et al.  The predicates for the Voronoi diagram of ellipses , 2006, SCG '06.

[12]  James U. Korein,et al.  Robotics , 2018, IBM Syst. J..

[13]  Hazel Everett,et al.  The Voronoi Diagram of Three Lines , 2007, SCG '07.

[14]  Olivier Devillers Improved incremental randomized Delaunay triangulation , 1998, SCG '98.

[15]  Ioannis Z. Emiris,et al.  The predicates of the Apollonius diagram: Algorithmic analysis and implementation , 2006, Comput. Geom..

[16]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[17]  Mariette Yvinec,et al.  Feature preserving Delaunay mesh generation from 3D multi‐material images , 2009, Comput. Graph. Forum.

[18]  Vladlen Koltun Almost tight upper bounds for lower envelopes in higher dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[19]  Elmar Schömer,et al.  An Exact, Complete and Efficient Implementation for Computing Planar Maps of Quadric Intersection Curves * , 2005 .

[20]  Elmar Schömer,et al.  Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics , 2007, ESA.

[21]  Mariette Yvinec,et al.  Dynamic Additively Weighted Voronoi Diagrams in 2D , 2002, ESA.

[22]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[23]  Dinesh Manocha,et al.  Exact computation of the medial axis of a polyhedron , 2004, Comput. Aided Geom. Des..

[24]  Luc Devroye,et al.  Expected time analysis for Delaunay point location , 2004, Comput. Geom..

[25]  Victor J. Milenkovic,et al.  Robust Construction of the Voronoi Diagram of a Polyhedron , 1993, CCCG.

[26]  Jean-Daniel Boissonnat,et al.  Effective computational geometry for curves and surfaces , 2006 .

[27]  HalperinDan,et al.  An experimental study of point location in planar arrangements in CGAL , 2009 .

[28]  Micha Sharir,et al.  The overlay of lower envelopes and its applications , 1996, Discret. Comput. Geom..

[29]  Jean-Daniel Boissonnat,et al.  Convex Hull and Voronoi Diagram of Additively Weighted Points , 2005, ESA.

[30]  Micha Sharir,et al.  3-Dimensional Euclidean Voronoi Diagrams of Lines with a Fixed Number of Orientations , 2003, SIAM J. Comput..

[31]  Dan Halperin,et al.  An experimental study of point location in planar arrangements in CGAL , 2009, JEAL.