A Novel Navigation Method for Autonomous Mobile Vehicles

This paper presents a novel navigation method for Autonomous Mobile Vehicle in unknown environments. The proposed navigator consists of an Obstacle Avoider (OA), a Goal Seeker (GS), a Navigation Supervisor (NS) and an Environment Evaluator (EE). The fuzzy actions inferred by the OA and the GS are weighted by the NS using the local and global environmental information and fused through fuzzy set operation to produce a command action, from which the final crisp action is determined by defuzzification. The EE tunes the supports of the fuzzy sets for the OA and the NS; therefore, the capability of the navigation method is enhanced. Simulation shows that the navigator is able to perform successful navigation task in various unknown or partially known environments, and it has satisfactory ability in tackling moving obstacles. More importantly, it has smooth action and exceptionally good robustness to sensor noise.

[1]  Marzuki Khalid,et al.  Tuning of a neuro-fuzzy controller by genetic algorithm , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[2]  In-So Kweon,et al.  Behavior-based Intelligent Robot In Dynamic Indoor Environments , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  N. H. C. Yung,et al.  An Intelligent Navigator for Mobile Vehicles , 1996 .

[4]  N. H. C. Yung,et al.  An intelligent mobile vehicle navigator based on fuzzy logic and reinforcement learning , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[5]  Narendra Ahuja,et al.  A potential field approach to path planning , 1992, IEEE Trans. Robotics Autom..

[6]  Helmut Hoyer,et al.  Fuzzy collision avoidance for industrial robots , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[7]  S. Sitharama Iyengar,et al.  Incidental Learning And Environmental Exploration In Unknown Terrains , 1990, Other Conferences.

[8]  Hugh F. Durrant-Whyte,et al.  Inertial navigation systems for mobile robots , 1995, IEEE Trans. Robotics Autom..

[9]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[10]  Nageswara S. V. Rao,et al.  Robot navigation in unknown generalized polygonal terrains using vision sensors , 1995, IEEE Trans. Syst. Man Cybern..

[11]  Martial Hebert,et al.  A behavior-based system for off-road navigation , 1994, IEEE Trans. Robotics Autom..

[12]  John Yen,et al.  A fuzzy logic based extension to Payton and Rosenblatt's command fusion method for mobile robot navigation , 1995, IEEE Trans. Syst. Man Cybern..

[13]  O. Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[14]  Rodney A. Brooks,et al.  Solving the Find-Path Problem by Good Representation of Free Space , 1983, Autonomous Robot Vehicles.

[15]  Bruce H. Krogh,et al.  Satisficing feedback strategies for local navigation of autonomous mobile robots , 1990, IEEE Trans. Syst. Man Cybern..

[16]  J. Guldner,et al.  Sliding mode control for gradient tracking and robot navigation using artificial potential fields , 1995, IEEE Trans. Robotics Autom..

[17]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains using learned visibility graphs. Part I: The disjoint convex obstacle case , 1987, IEEE Journal on Robotics and Automation.

[18]  Vladimir J. Lumelsky,et al.  Dynamic path planning in sensor-based terrain acquisition , 1990, IEEE Trans. Robotics Autom..

[19]  Joseph S. B. Mitchell,et al.  An Algorithmic Approach to Some Problems in Terrain Navigation , 1988, Artif. Intell..

[20]  Yoram Koren,et al.  The vector field histogram-fast obstacle avoidance for mobile robots , 1991, IEEE Trans. Robotics Autom..

[21]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[22]  Yoram Koren,et al.  Potential field methods and their inherent limitations for mobile robot navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[23]  M. Sugeno,et al.  Fuzzy Control of Model Car , 1985 .

[24]  David W. Payton,et al.  Plan guided reaction , 1990, IEEE Trans. Syst. Man Cybern..

[25]  R. Brooks Planning Collision- Free Motions for Pick-and-Place Operations , 1983 .

[26]  Cang Ye,et al.  EXPECTATIONS-an autonomous mobile vehicle simulator , 1997, 1997 IEEE International Conference on Systems, Man, and Cybernetics. Computational Cybernetics and Simulation.

[27]  François G. Pin,et al.  Using fuzzy behaviors for the outdoor navigation of a car with low-resolution sensors , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[28]  Ren C. Luo,et al.  Autonomous mobile robot global motion planning and geometric beacon collection using traversability vectors , 1997, IEEE Trans. Robotics Autom..

[29]  Narendra Ahuja,et al.  An analytically tractable potential field model of free space and its application in obstacle avoidance , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[30]  Ronald C. Arkin,et al.  Motor schema based navigation for a mobile robot: An approach to programming by behavior , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[31]  Hyung Suck Cho,et al.  A sensor-based navigation for a mobile robot using fuzzy logic and reinforcement learning , 1995, IEEE Trans. Syst. Man Cybern..

[32]  Marcel Schoppers,et al.  Universal Plans for Reactive Robots in Unpredictable Environments , 1987, IJCAI.

[33]  Takeo Kanade,et al.  Vision and Navigation for the Carnegie-Mellon Navlab , 1987 .

[34]  Tomás Lozano-Pérez,et al.  Spatial Planning: A Configuration Space Approach , 1983, IEEE Transactions on Computers.

[35]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[36]  Erann Gat,et al.  Behavior control for robotic exploration of planetary surfaces , 1994, IEEE Trans. Robotics Autom..

[37]  Ehud Rivlin,et al.  Sensory-based motion planning with global proofs , 1997, IEEE Trans. Robotics Autom..

[38]  Yoram Koren,et al.  Real-time obstacle avoidance for fact mobile robots , 1989, IEEE Trans. Syst. Man Cybern..

[39]  Edward Tunstel Coordination of distributed fuzzy behaviors in mobile robot control , 1995, 1995 IEEE International Conference on Systems, Man and Cybernetics. Intelligent Systems for the 21st Century.