An Excursion into the Theory of Hankel Operators

This survey is an introduction to the theory of Hankel operators, a beautiful area of mathematical analysis that is also very important in applications. We start with classical results: Kronecker’s theorem, Nehari’s theorem, Hartman’s theorem, Adamyan–Arov–Krein theorems. Then we describe the Hankel operators in the Schatten–von Neumann class Sp and consider numerous applications: Sarason’s commutant lifting theorem, rational approximation, stationary processes, best approximation by analytic functions. We also present recent results on spectral properties of Hankel operators with lacunary symbols. Finally, we discuss briefly the most recent results involving Hankel operators: Pisier’s solution of the problem of similarity to a contraction, self-adjoint operators unitarily equivalent to Hankel operators, and approximation by analytic matrix-valued functions.

[1]  V. Tolokonnikov,et al.  Hankel operators and problems of best approximation of unbounded functions , 1987 .

[2]  C. Foiaș,et al.  Analyse harmonique des opérateurs de l'espace de Hilbert , 1967 .

[3]  B. Szőkefalvi-Nagy On uniformly bounded linear transformations in Hilbert space , 1946 .

[4]  Y. Kamp,et al.  The Nevanlinna–Pick Problem for Matrix-Valued Functions , 1979 .

[5]  H. S. Shapiro,et al.  On certain extremum problems for analytic functions , 1953 .

[6]  R. Ober A note on a system theoretic approach to a conjecture by Peller-Khrushchev: The general case , 1990 .

[7]  G. Pisier A polynomially bounded operator on Hilbert space which is not similar to a contraction , 1996, math/9602207.

[8]  Lavon B. Page,et al.  Bounded and compact vectorial Hankel operators , 1970 .

[9]  J. Conway Function theory on the unit circle , 1991 .

[10]  V. Peller,et al.  Superoptimal singular values and indices of matrix functions , 1994 .

[11]  Paul R. Halmos,et al.  Ten problems in Hilbert space , 1970 .

[12]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[13]  On polynomially bounded operators. , 1990 .

[14]  D. Luecking The compact Hankel operators form an $M$-ideal in the space of Hankel operators , 1980 .

[15]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[16]  F. Riesz,et al.  Leçons d,analyse fonctionnelle , 1953 .

[17]  H. Hamburger,et al.  Über eine Erweiterung des Stieltjesschen Momentenproblems , 1920 .

[18]  F. Smithies A HILBERT SPACE PROBLEM BOOK , 1968 .

[19]  Z. Nehari Bounded analytic functions , 1950 .

[20]  P. Fuhrmann Linear Systems and Operators in Hilbert Space , 1982 .

[21]  Hilbert A -Modules,et al.  Projective Hilbert A(D)-Modules , 1997 .

[22]  P. Heywood Trigonometric Series , 1968, Nature.

[23]  L. Carleson,et al.  Best uniform approximation by analytic functions , 1972 .

[24]  Sergei Treil,et al.  On Superoptimal Approximation by Analytic and Meromorphic Matrix-Valued Functions , 1995 .

[25]  R. Douglas Banach Algebra Techniques in Operator Theory , 1972 .

[26]  J. Peetre New thoughts on Besov spaces , 1976 .

[27]  Nicholas Young,et al.  Superoptimal analytic approximations of matrix functions. , 1994 .

[28]  G. Pisier Similarity problems and completely bounded maps , 1995 .

[29]  D. Sarason Generalized interpolation in , 1967 .

[30]  D. Sarason Function theory on the unit circle , 1978 .

[31]  S. Semmes Trace ideal criteria for Hankel operators, and applications to Besov spaces , 1984 .

[32]  Approximation by Compact Operators and the Space Hînfty + C , 1979 .

[33]  James D. Stafney A class of operators and similarity to contractions. , 1994 .

[34]  Philip Hartman,et al.  On completely continuous Hankel matrices , 1958 .

[35]  G. Weiss,et al.  Representation theorems for holomorphic and harmonic functions in L[P] . The molecular characterization of certain Hardy spaces , 1980 .

[36]  V. Paulsen Every Completely Polynomially Bounded Operator Is Similar to a Contraction , 1984 .

[37]  S. Foguel A counterexample to a problem of Sz.-Nagy , 1964 .

[38]  J. Peetre,et al.  On the generalized Hardy's inequality of McGhee, Pigno and Smith and the problem of interpolation between BMO and a Besov space. , 1984 .

[39]  H. Hamburger Über eine Erweiterung des Stieltjesschen Momentenproblems (Teil II). , 2022 .

[40]  J. D. Newburgh The variation of spectra , 1951 .

[41]  Polynomially bounded operators. , 1997 .

[42]  On Best Uniform Approximation by Bounded Analytic Functions , 1996 .

[43]  J. Bourgain On the similarity problem for polynomially bounded operators on hilbert space , 1986 .

[44]  S. Treil,et al.  The inverse spectral problem for self-adjoint Hankel operators , 1995 .

[45]  Continuity properties of best analytic approximation. , 1995, math/9511214.

[46]  Superoptimal singular values and indices of infinite matrix functions , 1995 .

[47]  Vladimir Peller,et al.  Approximation by Analytic Matrix Functions: The Four Block Problem , 1995 .

[48]  K. Hoffman Banach Spaces of Analytic Functions , 1962 .

[49]  S. Kislyakov Operators (not) similar to a contraction: Pisier's counterexample via singular integrals , 2000 .

[50]  H. Price Past and future , 1990, Nature.

[51]  S. Power Hankel Operators on Hilbert Space , 1980 .

[52]  H. Shapiro,et al.  Extremal problems for polynomials and power series , 1951 .

[53]  S. Janson,et al.  Paracommutators—boundedness and Schatten-von Neumann properties , 1988 .

[54]  A A Pekarskiĭ CLASSES OF ANALYTIC FUNCTIONS DETERMINED BY BEST RATIONAL APPROXIMATIONS IN $ H_p$ , 1986 .

[55]  Vladimir Peller,et al.  Hankel operators and similarity to a contraction , 1996 .

[56]  M. Kreĭn,et al.  Introduction to the theory of linear nonselfadjoint operators , 1969 .

[57]  V. Peller Hankel operators and multivariate stationary processes , 1988 .

[58]  Z. Nehari On Bounded Bilinear Forms , 1957 .

[59]  V. P. Khavin,et al.  Linear and Complex Analysis Problem Book: 199 Research Problems , 1984 .

[60]  J. Neumann,et al.  Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes. Erhard Schmidt zum 75. Geburtstag in Verehrung gewidmet , 1950 .

[61]  A note on a system theoretic approach to a conjecture by Peller-Khrushchev , 1987 .

[62]  V. Peller Boundedness properties of the operators of best approximation by analytic and meromorphic functions , 1992 .