A Fresh Variational-Analysis Look at the Positive Semidefinite Matrices World
暂无分享,去创建一个
[1] Eugene P. Wigner,et al. On Weakly Positive Matrices , 1963, Canadian Journal of Mathematics.
[2] A. Lewis. Eigenvalue-constrained faces☆ , 1998 .
[3] Adrian S. Lewis,et al. Convex Analysis And Nonlinear Optimization , 2000 .
[4] Jan Brinkhuis,et al. Optimization: Insights and Applications (Princeton Series in Applied Mathematics) , 2005 .
[5] Franz Rendl,et al. A recipe for semidefinite relaxation for (0,1)-quadratic programming , 1995, J. Glob. Optim..
[6] Clifford Ambrose Truesdell,et al. A first course in rational continuum mechanics , 1976 .
[7] Nathan Krislock,et al. Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions , 2010, SIAM J. Optim..
[8] J. Hiriart-Urruty,et al. Fundamentals of Convex Analysis , 2004 .
[9] J. Lasserre,et al. Handbook on Semidefinite, Conic and Polynomial Optimization , 2012 .
[10] R. Duffin,et al. Series and parallel addition of matrices , 1969 .
[11] Maher Moakher,et al. Symmetric Positive-Definite Matrices: From Geometry to Applications and Visualization , 2006, Visualization and Processing of Tensor Fields.
[12] Cornelis Vuik,et al. On deflation and singular symmetric positive semi-definite matrices , 2007 .
[13] J. Borwein,et al. Facial reduction for a cone-convex programming problem , 1981, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[14] Hans Zassenhaus,et al. On the similarity transformation between a matirx and its transpose. , 1959 .
[15] Adrian S. Lewis,et al. Nonsmooth analysis of eigenvalues , 1999, Math. Program..
[16] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[17] Michael L. Overton,et al. Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..
[18] Jérôme Malick,et al. A Dual Approach to Semidefinite Least-Squares Problems , 2004, SIAM J. Matrix Anal. Appl..
[19] Olga Taussky,et al. The role of symmetric matrices in the study of general matrices , 1972 .
[20] Yurii Nesterov,et al. Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.
[21] C. Ballantine,et al. Products of positive definite matrices. III , 1968 .
[22] J. Hiriart-Urruty,et al. Sensitivity analysis of all eigenvalues of a symmetric matrix , 1995 .
[23] Michael J. Todd,et al. On the Riemannian Geometry Defined by Self-Concordant Barriers and Interior-Point Methods , 2002, Found. Comput. Math..
[24] Sylvie Benzoni-Gavage. Calcul différentiel et équations différentielles : Cours et exercices corrigés Ed. 2 , 2014 .
[25] Vladimir A. Yakubovich,et al. Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..
[26] Xavier Pennec,et al. Statistical Computing on Manifolds for Computational Anatomy , 2006 .
[27] J. Crouzeix,et al. Definiteness and semidefiniteness of quadratic forms revisited , 1984 .
[28] Maher Moakher,et al. A Differential Geometric Approach to the Geometric Mean of Symmetric Positive-Definite Matrices , 2005, SIAM J. Matrix Anal. Appl..
[29] Jean-Baptiste Hiriart-Urruty,et al. Potpourri of Conjectures and Open Questions in Nonlinear Analysis and Optimization , 2007, SIAM Rev..
[30] Jean Charles Gilbert,et al. Some Theory of Nonsmooth Optimization , 2003 .
[31] Jan Brinkhuis,et al. Optimization Insights and Applications , 2010 .
[32] Yurii Nesterov,et al. Smoothing Technique and its Applications in Semidefinite Optimization , 2004, Math. Program..
[33] Florent Cadoux. Optimisation et analyse convexe pour la dynamique non-régulière , 2009 .
[34] Michael Merritt,et al. Plenary Talk , 2004, Proceedings of the IEEE International Conference on Mechatronics, 2004. ICM '04..
[35] Silvere Bonnabel,et al. Riemannian Metric and Geometric Mean for Positive Semidefinite Matrices of Fixed Rank , 2008, SIAM J. Matrix Anal. Appl..
[36] Marie-Françoise Roy,et al. Real algebraic geometry , 1992 .
[37] Ernst Kunz. Erich Kähler. mathematische werke. mathematical works , 2006 .
[38] Adrian S. Lewis,et al. Alternating Projections on Manifolds , 2008, Math. Oper. Res..
[39] David W. Lewis,et al. Matrix theory , 1991 .
[40] Alberto Seeger,et al. A Variational Approach to Copositive Matrices , 2010, SIAM Rev..
[41] Henry Wolkowicz,et al. Handbook of Semidefinite Programming , 2000 .
[42] Heinz H. Bauschke,et al. The resolvent average for positive semidefinite matrices , 2009, 0910.3705.
[43] Xinmin Wang. Comparison theorems for a class of parallel multisplitting AOR type iterative methods , 1998 .
[44] Jan Brinkhuis,et al. Optimization: Insights and Applications: Insights and Applications , 2005 .
[45] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[46] Ivar Ekeland. Some applications of the Cartan-Kähler theorem to economic theory , 2005 .
[47] Jean-Baptiste Hiriart-Urruty,et al. A new series of conjectures and open questions in optimization and matrix analysis , 2009 .
[48] O. Mangasarian,et al. Conjugate Cone Characterization of Positive Definite and Semidefinite Matrices. , 1984 .
[49] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[50] Adrian S. Lewis,et al. The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..
[51] G. Strang. Introduction to Linear Algebra , 1993 .
[52] A. D. Ioffe,et al. An Invitation to Tame Optimization , 2008, SIAM J. Optim..
[53] Hans Hagen,et al. Visualization and Processing of Tensor Fields , 2014 .
[54] E. Yaz. Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.
[55] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[56] Neil C. Schwertman,et al. Smoothing an indefinite variance-covariance matrix , 1979 .
[57] A. J. Bosch,et al. The factorization of a square matrix into two symmetric matrices , 1986 .
[58] David P. Williamson,et al. Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.
[59] R. Saigal,et al. Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .
[60] R. Bhatia. Positive Definite Matrices , 2007 .
[61] Stephen P. Boyd,et al. Linear Matrix Inequalities in Systems and Control Theory , 1994 .