The Emerging Trends of Multi-Label Learning

Exabytes of data are generated daily by humans, leading to the growing need for new efforts in dealing with the grand challenges for multi-label learning brought by big data. For example, extreme multi-label classification is an active and rapidly growing research area that deals with classification tasks with an extremely large number of classes or labels; utilizing massive data with limited supervision to build a multi-label classification model becomes valuable for practical applications, etc. Besides these, there are tremendous efforts on how to harvest the strong learning capability of deep learning to better capture the label dependencies in multi-label learning, which is the key for deep learning to address real-world classification tasks. However, it is noted that there has been a lack of systemic studies that focus explicitly on analyzing the emerging trends and new challenges of multi-label learning in the era of big data. It is imperative to call for a comprehensive survey to fulfill this mission and delineate future research directions and new applications.

[1]  Bernhard Schölkopf,et al.  DiSMEC: Distributed Sparse Machines for Extreme Multi-label Classification , 2016, WSDM.

[2]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[3]  Jun Wang,et al.  Feature-Induced Partial Multi-label Learning , 2018, 2018 IEEE International Conference on Data Mining (ICDM).

[4]  Hao Guo,et al.  Visual Attention Consistency Under Image Transforms for Multi-Label Image Classification , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Anqi Qiu,et al.  Multi-label segmentation of white matter structures: Application to neonatal brains , 2014, NeuroImage.

[6]  Chih-Jen Lin,et al.  A Unified Algorithm for One-Cass Structured Matrix Factorization with Side Information , 2017, AAAI.

[7]  Yilong Yin,et al.  Deep Correlation Structure Preserved Label Space Embedding for Multi-label Classification , 2018, ACML.

[8]  Min-Ling Zhang,et al.  Partial Multi-Label Learning via Credible Label Elicitation , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Jinwen Ma,et al.  Multi-Label Classification with Label Graph Superimposing , 2019, AAAI.

[10]  Zhao Li,et al.  Collaboration Based Multi-Label Propagation for Fraud Detection , 2020, IJCAI.

[11]  Yu-Chiang Frank Wang,et al.  Learning Deep Latent Spaces for Multi-Label Classification , 2017, ArXiv.

[12]  Xin Geng,et al.  Label Distribution Learning , 2013, 2013 IEEE 13th International Conference on Data Mining Workshops.

[13]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[14]  Chun-Liang Li,et al.  Condensed Filter Tree for Cost-Sensitive Multi-Label Classification , 2014, ICML.

[15]  Mohamed Wiem Mkaouer,et al.  A Multi-label Active Learning Approach for Mobile App User Review Classification , 2019, KSEM.

[16]  Weiwei Liu,et al.  Discriminative and Correlative Partial Multi-Label Learning , 2019, IJCAI.

[17]  Changsheng Li,et al.  Multi-Instance Multi-Label Action Recognition and Localization Based on Spatio-Temporal Pre-Trimming for Untrimmed Videos , 2020, AAAI.

[18]  Chris Biemann,et al.  Hierarchical Multi-label Classification of Text with Capsule Networks , 2019, ACL.

[19]  Liang Lin,et al.  Multi-label Image Recognition by Recurrently Discovering Attentional Regions , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[20]  Johannes Fürnkranz,et al.  Learning Context-dependent Label Permutations for Multi-label Classification , 2019, ICML.

[21]  Zhi-Hua Zhou,et al.  Multi-Label Learning with Deep Forest , 2019, ECAI.

[22]  Qi Yu,et al.  Fast Direct Search in an Optimally Compressed Continuous Target Space for Efficient Multi-Label Active Learning , 2019, ICML.

[23]  Wei Bao,et al.  Generalized Large Margin $k$NN for Partial Label Learning , 2022, IEEE Transactions on Multimedia.

[24]  Ke Deng,et al.  Discriminatively Relabel for Partial Multi-label Learning , 2019, 2019 IEEE International Conference on Data Mining (ICDM).

[25]  Toshihiko Yamasaki,et al.  Multi-label Fashion Image Classification with Minimal Human Supervision , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[26]  Dacheng Tao,et al.  Robust Extreme Multi-label Learning , 2016, KDD.

[27]  Pradeep Ravikumar,et al.  PPDsparse: A Parallel Primal-Dual Sparse Method for Extreme Classification , 2017, KDD.

[28]  Sheng-Jun Huang,et al.  Partial Multi-Label Learning , 2018, AAAI.

[29]  Weiwei Liu,et al.  Deep Discrete Prototype Multilabel Learning , 2018, IJCAI.

[30]  Axel Schulz,et al.  A rapid-prototyping framework for extracting small-scale incident-related information in microblogs: Application of multi-label classification on tweets , 2016, Inf. Syst..

[31]  Xin Geng,et al.  Weakly Supervised Multi-Label Learning via Label Enhancement , 2019, IJCAI.

[32]  Xuegang Hu,et al.  Co-training Based on Semi-Supervised Ensemble Classification Approach for Multi-label Data Stream , 2019, 2019 IEEE International Conference on Big Knowledge (ICBK).

[33]  Qiang Ji,et al.  Multi-label learning with missing labels for image annotation and facial action unit recognition , 2015, Pattern Recognit..

[34]  Jianfei Cai,et al.  Improving Multi-label Learning with Missing Labels by Structured Semantic Correlations , 2016, ECCV.

[35]  Dacheng Tao,et al.  Deep Streaming Label Learning , 2020, ICML.

[36]  Hang Dong,et al.  Joint Multi-Label Attention Networks for Social Text Annotation , 2019, NAACL.

[37]  Habibollah Danyali,et al.  Multi-atlas based neonatal brain extraction using a two-level patch-based label fusion strategy , 2019, Biomed. Signal Process. Control..

[38]  Zhenan Sun,et al.  A Lightweight Multi-Label Segmentation Network for Mobile Iris Biometrics , 2020, ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[39]  R. Feldman,et al.  Detection of Deception in Adults and Children via Facial Expressions. , 1979 .

[40]  Honggang Zhang,et al.  Deep Region and Multi-label Learning for Facial Action Unit Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Jure Leskovec,et al.  Inferring Networks of Substitutable and Complementary Products , 2015, KDD.

[42]  Bernhard Schölkopf,et al.  Data scarcity, robustness and extreme multi-label classification , 2019, Machine Learning.

[43]  Haobo Wang,et al.  Online Partial Label Learning , 2020, ECML/PKDD.

[44]  Jian Yang,et al.  Online Positive and Unlabeled Learning , 2020, IJCAI.

[45]  Weiwei Liu,et al.  Two-Stage Label Embedding via Neural Factorization Machine for Multi-Label Classification , 2019, AAAI.

[46]  LinHsuan-Tien,et al.  Multilabel classification with principal label space transformation , 2012 .

[47]  Jiebo Luo,et al.  Weakly Semi-Supervised Deep Learning for Multi-Label Image Annotation , 2015, IEEE Transactions on Big Data.

[48]  Ehsan Abbasnejad,et al.  Label Filters for Large Scale Multilabel Classification , 2017, AISTATS.

[49]  Guangjie Han,et al.  Cross-layer optimized routing in wireless sensor networks with duty cycle and energy harvesting , 2015, Wirel. Commun. Mob. Comput..

[50]  Marcel Worring,et al.  The Semantic Pathfinder: Using an Authoring Metaphor for Generic Multimedia Indexing , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Baoyuan Wu,et al.  Constrained Submodular Minimization for Missing Labels and Class Imbalance in Multi-label Learning , 2016, AAAI.

[52]  Honggang Zhang,et al.  Joint patch and multi-label learning for facial action unit detection , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[53]  Weiwei Liu,et al.  Metric Learning for Multi-Output Tasks , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Rong Jin,et al.  Multi-label learning with incomplete class assignments , 2011, CVPR 2011.

[55]  Eyke Hüllermeier,et al.  Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains , 2010, ICML.

[56]  Manik Varma,et al.  Extreme Multi-label Loss Functions for Recommendation, Tagging, Ranking & Other Missing Label Applications , 2016, KDD.

[57]  Robert Jenssen,et al.  Noisy multi-label semi-supervised dimensionality reduction , 2019, Pattern Recognit..

[58]  Sun-Yuan Kung,et al.  Ensemble random projection for multi-label classification with application to protein subcellular localization , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[59]  Dale Schuurmans,et al.  Multi-label Classification with Output Kernels , 2013, ECML/PKDD.

[60]  Samy Bengio,et al.  ADIOS: Architectures Deep In Output Space , 2016, ICML.

[61]  Yongdong Zhang,et al.  Semi-supervised User Profiling with Heterogeneous Graph Attention Networks , 2019, IJCAI.

[62]  Rogério Schmidt Feris,et al.  LaSO: Label-Set Operations Networks for Multi-Label Few-Shot Learning , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[63]  Venkatesh Balasubramanian,et al.  Slice: Scalable Linear Extreme Classifiers Trained on 100 Million Labels for Related Searches , 2019, WSDM.

[64]  Jeff G. Schneider,et al.  Multi-Label Output Codes using Canonical Correlation Analysis , 2011, AISTATS.

[65]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[66]  Inderjit S. Dhillon,et al.  Large-scale Multi-label Learning with Missing Labels , 2013, ICML.

[67]  Zhen Wang,et al.  Learning Low-Rank Label Correlations for Multi-label Classification with Missing Labels , 2014, 2014 IEEE International Conference on Data Mining.

[68]  Qingshan Liu,et al.  A Self-Paced Regularization Framework for Multilabel Learning , 2016, IEEE Transactions on Neural Networks and Learning Systems.

[69]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[70]  Mubarak Shah,et al.  Fast Zero-Shot Image Tagging , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[71]  Tao Xiang,et al.  Deep Ranking for Image Zero-Shot Multi-Label Classification , 2020, IEEE Transactions on Image Processing.

[72]  Mahdieh Soleymani Baghshah,et al.  An Efficient Semi-Supervised Multi-label Classifier Capable of Handling Missing Labels , 2019, IEEE Transactions on Knowledge and Data Engineering.

[73]  Yi Yang,et al.  A Convex Formulation for Semi-Supervised Multi-Label Feature Selection , 2014, AAAI.

[74]  Tie-Yan Liu,et al.  A Theoretical Analysis of NDCG Type Ranking Measures , 2013, COLT.

[75]  Wang Zhan,et al.  Inductive Semi-supervised Multi-Label Learning with Co-Training , 2017, KDD.

[76]  Qiang Ji,et al.  Multi-label Learning with Missing Labels , 2014, 2014 22nd International Conference on Pattern Recognition.

[77]  Eyke Hüllermeier,et al.  Extreme F-measure Maximization using Sparse Probability Estimates , 2016, ICML.

[78]  Kaixiang Wang,et al.  Robust Embedding Framework with Dynamic Hypergraph Fusion for Multi-label Classification , 2019, 2019 IEEE International Conference on Multimedia and Expo (ICME).

[79]  Meng Wang,et al.  Correlative multilabel video annotation with temporal kernels , 2008, TOMCCAP.

[80]  Elias Oliveira,et al.  Multi-label incremental learning applied to web page categorization , 2013, Neural Computing and Applications.

[81]  Michael K. Ng,et al.  Transductive Multilabel Learning via Label Set Propagation , 2013, IEEE Transactions on Knowledge and Data Engineering.

[82]  Kilian Q. Weinberger,et al.  Fast Image Tagging , 2013, ICML.

[83]  Guo-Jun Qi,et al.  Online Multi-Label Active Learning for Large-Scale Multimedia Annotation , 2008 .

[84]  Johannes Fürnkranz,et al.  Large-Scale Multi-label Text Classification - Revisiting Neural Networks , 2013, ECML/PKDD.

[85]  Gang Chen,et al.  Semi-supervised Multi-label Learning by Solving a Sylvester Equation , 2008, SDM.

[86]  Qiang Ji,et al.  Capturing Global Semantic Relationships for Facial Action Unit Recognition , 2013, 2013 IEEE International Conference on Computer Vision.

[87]  Ivor W. Tsang,et al.  The Emerging "Big Dimensionality" , 2014, IEEE Computational Intelligence Magazine.

[88]  Guangjie Han,et al.  Analysis of Energy-Efficient Connected Target Coverage Algorithms for Industrial Wireless Sensor Networks , 2017, IEEE Transactions on Industrial Informatics.

[89]  Tommy W. S. Chow,et al.  Multi-Label Low-dimensional Embedding with Missing Labels , 2017, Knowl. Based Syst..

[90]  Manik Varma,et al.  Extreme Multi-label Learning with Label Features for Warm-start Tagging, Ranking & Recommendation , 2018, WSDM.

[91]  Shiguang Shan,et al.  Automatic Engagement Prediction with GAP Feature , 2018, ICMI.

[92]  Burton H. Bloom,et al.  Space/time trade-offs in hash coding with allowable errors , 1970, CACM.

[93]  Zhi-Hua Zhou,et al.  ML-KNN: A lazy learning approach to multi-label learning , 2007, Pattern Recognit..

[94]  Ji Feng,et al.  Deep Forest: Towards An Alternative to Deep Neural Networks , 2017, IJCAI.

[95]  Pichao Wang,et al.  Adaptive Hypergraph Embedded Semi-Supervised Multi-Label Image Annotation , 2019, IEEE Transactions on Multimedia.

[96]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[97]  Manik Varma,et al.  ECLARE: Extreme Classification with Label Graph Correlations , 2021, WWW.

[98]  Weiwei Liu,et al.  Sparse Extreme Multi-label Learning with Oracle Property , 2019, ICML.

[99]  Gareth Funka-Lea,et al.  Multi-label Image Segmentation for Medical Applications Based on Graph-Theoretic Electrical Potentials , 2004, ECCV Workshops CVAMIA and MMBIA.

[100]  Pascale Kuntz,et al.  CRAFTML, an Efficient Clustering-based Random Forest for Extreme Multi-label Learning , 2018, ICML.

[101]  Ion Androutsopoulos,et al.  Large-Scale Multi-Label Text Classification on EU Legislation , 2019, ACL.

[102]  Zhiyuan Liu,et al.  Graph Neural Networks: A Review of Methods and Applications , 2018, AI Open.

[103]  Bo Wang,et al.  Dynamic Label Propagation for Semi-supervised Multi-class Multi-label Classification , 2013, ICCV.

[104]  Ion Androutsopoulos,et al.  An Empirical Study on Large-Scale Multi-Label Text Classification Including Few and Zero-Shot Labels , 2020, EMNLP.

[105]  Sid Ying-Ze Bao,et al.  Cross-Modality Attention with Semantic Graph Embedding for Multi-Label Classification , 2020, AAAI.

[106]  Shiguang Shan,et al.  Multi-label Learning from Noisy Labels with Non-linear Feature Transformation , 2018, ACCV.

[107]  Jian Yu,et al.  Semi-supervised low-rank mapping learning for multi-label classification , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[108]  Ivor W. Tsang,et al.  Matrix Co-completion for Multi-label Classification with Missing Features and Labels , 2018, ArXiv.

[109]  Yu-Chiang Frank Wang,et al.  Order-Free RNN with Visual Attention for Multi-Label Classification , 2017, AAAI.

[110]  Guoxian Yu,et al.  Semi-supervised multi-label classification using incomplete label information , 2017, Neurocomputing.

[111]  Weiwei Liu,et al.  Multilabel Prediction via Cross-View Search , 2018, IEEE Transactions on Neural Networks and Learning Systems.

[112]  Nitesh V. Chawla,et al.  Multi-Label Patent Categorization with Non-Local Attention-Based Graph Convolutional Network , 2020, AAAI.

[113]  Jianfei Cai,et al.  MIML-FCN+: Multi-Instance Multi-Label Learning via Fully Convolutional Networks with Privileged Information , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Sheng-Jun Huang,et al.  Partial Multi-Label Learning With Noisy Label Identification , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[115]  Yukihiro Tagami,et al.  AnnexML: Approximate Nearest Neighbor Search for Extreme Multi-label Classification , 2017, KDD.

[116]  Ziwei Li,et al.  Partial Multi-Label Learning via Multi-Subspace Representation , 2020, IJCAI.

[117]  Nenghai Yu,et al.  Learning Spatial Regularization with Image-Level Supervisions for Multi-label Image Classification , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[118]  Purushottam Kar,et al.  Accelerating Extreme Classification via Adaptive Feature Agglomeration , 2019, IJCAI.

[119]  Xiao Zheng,et al.  Learning Label-Specific Features for Multi-Label Classification with Missing Labels , 2018, 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM).

[120]  Zhi-Hua Zhou,et al.  Multi-Label Active Learning: Query Type Matters , 2015, IJCAI.

[121]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[122]  Baoyuan Wu,et al.  Tencent ML-Images: A Large-Scale Multi-Label Image Database for Visual Representation Learning , 2019, IEEE Access.

[123]  Ashish Kapoor,et al.  Active learning for sparse bayesian multilabel classification , 2014, KDD.

[124]  Hefeng Wu,et al.  Learning Semantic-Specific Graph Representation for Multi-Label Image Recognition , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[125]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[126]  Shiguang Shan,et al.  Weakly Supervised Image Classification Through Noise Regularization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Wei Liu,et al.  Teaching-to-Learn and Learning-to-Teach for Multi-label Propagation , 2016, AAAI.

[128]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.

[129]  Koby Crammer,et al.  A Family of Additive Online Algorithms for Category Ranking , 2003, J. Mach. Learn. Res..

[130]  Zhi-Hua Zhou,et al.  Multi-Label Learning with Emerging New Labels , 2018, IEEE Transactions on Knowledge and Data Engineering.

[131]  Habibollah Danyali,et al.  Multi-atlas based neonatal brain extraction using atlas library clustering and local label fusion , 2020, Multimedia Tools and Applications.

[132]  Ming Yang,et al.  Mining partially annotated images , 2011, KDD.

[133]  Jason Weston,et al.  Label Partitioning For Sublinear Ranking , 2013, ICML.

[134]  Ning Xu,et al.  Label Enhancement for Label Distribution Learning , 2018, IEEE Transactions on Knowledge and Data Engineering.

[135]  Jeff G. Schneider,et al.  Maximum Margin Output Coding , 2012, ICML.

[136]  Mahdieh Soleymani Baghshah,et al.  A probabilistic multi-label classifier with missing and noisy labels handling capability , 2017, Pattern Recognit. Lett..

[137]  JiQiang,et al.  Multi-label learning with missing labels for image annotation and facial action unit recognition , 2015 .

[138]  Christian Böhm,et al.  Online Semi-supervised Multi-label Classification with Label Compression and Local Smooth Regression , 2020, IJCAI.

[139]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[140]  Manik Varma,et al.  FastXML: a fast, accurate and stable tree-classifier for extreme multi-label learning , 2014, KDD.

[141]  Michael I. Jordan,et al.  Modeling annotated data , 2003, SIGIR.

[142]  Sunho Park,et al.  Online multi-label learning with accelerated nonsmooth stochastic gradient descent , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[143]  Rong Jin,et al.  Efficient multi-label ranking for multi-class learning: Application to object recognition , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[144]  Nagarajan Natarajan,et al.  Distributional Semantics Meets Multi-Label Learning , 2019, AAAI.

[145]  Ruiyun Yu,et al.  Multi-label classification methods for green computing and application for mobile medical recommendations , 2016, IEEE Access.

[146]  Gang Niu,et al.  Are Anchor Points Really Indispensable in Label-Noise Learning? , 2019, NeurIPS.

[147]  Bo An,et al.  Collaboration based Multi-Label Learning , 2019, AAAI.

[148]  Jun Shu,et al.  Variational Label Enhancement , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[149]  Ning Xu,et al.  Multi-label Learning with Label Enhancement , 2017, 2018 IEEE International Conference on Data Mining (ICDM).

[150]  Krishnakumar Balasubramanian,et al.  The Landmark Selection Method for Multiple Output Prediction , 2012, ICML.

[151]  Gaël Richard,et al.  Confidence-based Weighted Loss for Multi-label Classification with Missing Labels , 2020, ICMR.

[152]  Hsuan-Tien Lin,et al.  Feature-aware Label Space Dimension Reduction for Multi-label Classification , 2012, NIPS.

[153]  Wei Bao,et al.  Fast Multi-label Learning , 2021, IJCAI.

[154]  Ning Xu,et al.  Partial Multi-Label Learning with Label Distribution , 2020, AAAI.

[155]  Yiming Yang,et al.  Deep Learning for Extreme Multi-label Text Classification , 2017, SIGIR.

[156]  Weiwei Liu,et al.  Making Decision Trees Feasible in Ultrahigh Feature and Label Dimensions , 2017, J. Mach. Learn. Res..

[157]  Liang Yang,et al.  Learning from Weak-Label Data: A Deep Forest Expedition , 2020, AAAI.

[158]  Yi Liu,et al.  Semi-supervised Multi-label Learning by Constrained Non-negative Matrix Factorization , 2006, AAAI.

[159]  Mahardhika Pratama,et al.  A novel online multi-label classifier for high-speed streaming data applications , 2016, Evolving Systems.

[160]  Qinghua Hu,et al.  Hybrid Noise-Oriented Multilabel Learning , 2020, IEEE Transactions on Cybernetics.

[161]  Wei Liu,et al.  Multi-Modal Curriculum Learning for Semi-Supervised Image Classification , 2016, IEEE Transactions on Image Processing.

[162]  Zihan Zhang,et al.  AttentionXML: Label Tree-based Attention-Aware Deep Model for High-Performance Extreme Multi-Label Text Classification , 2019, NeurIPS.

[163]  Arya Mazumdar,et al.  Multilabel Classification with Group Testing and Codes , 2017, ICML.

[164]  James T. Kwok,et al.  MultiLabel Classification on Tree- and DAG-Structured Hierarchies , 2011, ICML.

[165]  Xilin Chen,et al.  Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition , 2019, NeurIPS.

[166]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[167]  Wei Sun,et al.  Ranking-Based Autoencoder for Extreme Multi-label Classification , 2019, NAACL-HLT.

[168]  H BloomBurton Space/time trade-offs in hash coding with allowable errors , 1970 .

[169]  Zhi-Hua Zhou,et al.  Multi-Label Learning with Global and Local Label Correlation , 2017, IEEE Transactions on Knowledge and Data Engineering.

[170]  Dat T. Huynh,et al.  A Shared Multi-Attention Framework for Multi-Label Zero-Shot Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[171]  Rong Jin,et al.  Multi-label Multiple Kernel Learning by Stochastic Approximation: Application to Visual Object Recognition , 2010, NIPS.

[172]  Meng Joo Er,et al.  An online universal classifier for binary, multi-class and multi-label classification , 2016, 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC).

[173]  Wei Bao,et al.  Top- Partial Label Machine , 2021, IEEE Transactions on Neural Networks and Learning Systems.

[174]  David B. Dunson,et al.  Beta-Negative Binomial Process and Poisson Factor Analysis , 2011, AISTATS.

[175]  Harri Valpola,et al.  Weight-averaged consistency targets improve semi-supervised deep learning results , 2017, ArXiv.

[176]  Yoshihiro Yamanishi,et al.  Mining Discriminative Patterns from Graph Data with Multiple Labels and Its Application to Quantitative Structure-Activity Relationship (QSAR) Models , 2015, J. Chem. Inf. Model..

[177]  Rui Wang,et al.  Towards social user profiling: unified and discriminative influence model for inferring home locations , 2012, KDD.

[178]  Hsuan-Tien Lin,et al.  Multilabel Classification with Principal Label Space Transformation , 2012, Neural Computation.

[179]  Ankit Singh Rawat,et al.  Multilabel reductions: what is my loss optimising? , 2019, NeurIPS.

[180]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[181]  Yutaka Matsuo,et al.  Earthquake shakes Twitter users: real-time event detection by social sensors , 2010, WWW '10.

[182]  Mei Wang,et al.  Deep Visual Domain Adaptation: A Survey , 2018, Neurocomputing.

[183]  Shuai Zhang,et al.  A multi-label voting algorithm for neuro-fuzzy classifier ensembles with applications in visual arts data mining , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[184]  Prateek Jain,et al.  Sparse Local Embeddings for Extreme Multi-label Classification , 2015, NIPS.

[185]  Qiang Ji,et al.  Label Error Correction and Generation through Label Relationships , 2020, AAAI.

[186]  Younès Bennani,et al.  Online Semi-supervised Growing Neural Gas for Multi-label Data Classification , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[187]  Róbert Busa-Fekete,et al.  A no-regret generalization of hierarchical softmax to extreme multi-label classification , 2018, NeurIPS.

[188]  Ali Mousavi,et al.  Breaking the Glass Ceiling for Embedding-Based Classifiers for Large Output Spaces , 2019, NeurIPS.

[189]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.

[190]  John R. Smith,et al.  Large-scale concept ontology for multimedia , 2006, IEEE MultiMedia.

[191]  Hsuan-Tien Lin,et al.  Dynamic principal projection for cost-sensitive online multi-label classification , 2019, Machine Learning.

[192]  Luo Si,et al.  Binary Codes Embedding for Fast Image Tagging with Incomplete Labels , 2014, ECCV.

[193]  Abhinav Gupta,et al.  Learning from Noisy Large-Scale Datasets with Minimal Supervision , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[194]  Xiangliang Zhang,et al.  Multi-label Learning with Highly Incomplete Data via Collaborative Embedding , 2018, KDD.

[195]  Donghong Ji,et al.  Latent Emotion Memory for Multi-Label Emotion Classification , 2020, AAAI.

[196]  Alberto Maria Segre,et al.  The Use of Twitter to Track Levels of Disease Activity and Public Concern in the U.S. during the Influenza A H1N1 Pandemic , 2011, PloS one.

[197]  Lexing Ying,et al.  Top-k eXtreme Contextual Bandits with Arm Hierarchy , 2021, ICML.

[198]  Johannes Fürnkranz,et al.  Maximizing Subset Accuracy with Recurrent Neural Networks in Multi-label Classification , 2017, NIPS.

[199]  Ba-Ngu Vo,et al.  Online Visual Multi-Object Tracking via Labeled Random Finite Set Filtering , 2016, ArXiv.

[200]  Han Zhao,et al.  Extreme learning machine: algorithm, theory and applications , 2013, Artificial Intelligence Review.

[201]  Moustapha Cissé,et al.  Robust Bloom Filters for Large MultiLabel Classification Tasks , 2013, NIPS.

[202]  Weiwei Liu,et al.  An Easy-to-hard Learning Paradigm for Multiple Classes and Multiple Labels , 2017, J. Mach. Learn. Res..

[203]  Hung-Yi Lee,et al.  Order-free Learning Alleviating Exposure Bias in Multi-label Classification , 2019, AAAI.

[204]  Philip S. Yu,et al.  Large-Scale Multi-Label Learning with Incomplete Label Assignments , 2014, SDM.

[205]  Rohit Babbar,et al.  Bonsai - Diverse and Shallow Trees for Extreme Multi-label Classification , 2019, ArXiv.

[206]  Tao Xiang,et al.  Transductive Multi-label Zero-shot Learning , 2014, BMVC.

[207]  Hong Gu,et al.  Multi-instance multi-label learning based on Gaussian process with application to visual mobile robot navigation , 2012, Inf. Sci..

[208]  Robert E. Schapire,et al.  Hierarchical multi-label prediction of gene function , 2006, Bioinform..

[209]  Dat T. Huynh,et al.  Interactive Multi-Label CNN Learning With Partial Labels , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[210]  Jun Wang,et al.  Semi-Supervised Multi-Label Feature Selection by Preserving Feature-Label Space Consistency , 2018, CIKM.

[211]  Ivor W. Tsang,et al.  Survey on Multi-Output Learning , 2019, IEEE Transactions on Neural Networks and Learning Systems.

[212]  Zhi-Hua Zhou,et al.  Learning From Semi-Supervised Weak-Label Data , 2018, AAAI.

[213]  Yao Hu,et al.  Multi-View Partial Multi-Label Learning with Graph-Based Disambiguation , 2020, AAAI.

[214]  Manik Varma,et al.  Multi-label learning with millions of labels: recommending advertiser bid phrases for web pages , 2013, WWW.

[215]  Wei Liu,et al.  Multi-label Learning with Missing Labels Using Mixed Dependency Graphs , 2018, International Journal of Computer Vision.

[216]  Wei Zhou,et al.  MLP-IA: Multi-label User Profile Based on Implicit Association Labels , 2019, ICCS.

[217]  Tao Guo,et al.  GCN-IA: User Profile Based on Graph Convolutional Network with Implicit Association Labels , 2020, ICCS.

[218]  Zhi-Hua Zhou,et al.  Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization , 2006, IEEE Transactions on Knowledge and Data Engineering.

[219]  Greg Mori,et al.  Learning a Deep ConvNet for Multi-Label Classification With Partial Labels , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[220]  Zhi-Hua Zhou,et al.  On the Consistency of Multi-Label Learning , 2011, COLT.

[221]  I. Dhillon,et al.  Taming Pretrained Transformers for Extreme Multi-label Text Classification , 2019, KDD.

[222]  Zheng Chen,et al.  Effective multi-label active learning for text classification , 2009, KDD.

[223]  Ramakanth Kavuluru,et al.  Few-Shot and Zero-Shot Multi-Label Learning for Structured Label Spaces , 2018, EMNLP.

[224]  Hong Chang,et al.  Locally Smooth Metric Learning with Application to Image Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[225]  Congyan Lang,et al.  Robust Semi-supervised Multi-label Learning by Triple Low-Rank Regularization , 2019, PAKDD.

[226]  Tao Wang,et al.  Partial Multi-Label Learning by Low-Rank and Sparse Decomposition , 2019, AAAI.

[227]  Xiu-Shen Wei,et al.  Multi-Label Image Recognition With Graph Convolutional Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[228]  Manik Varma,et al.  DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents , 2021, WSDM.

[229]  Joost van de Weijer,et al.  Orderless Recurrent Models for Multi-Label Classification , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[230]  Eyke Hüllermeier,et al.  Consistent Multilabel Ranking through Univariate Losses , 2012, ICML.

[231]  Xin Li,et al.  Conditional Restricted Boltzmann Machines for Multi-label Learning with Incomplete Labels , 2015, AISTATS.

[232]  James T. Kwok,et al.  Multilabel Classification with Label Correlations and Missing Labels , 2014, AAAI.

[233]  Jian Jiao,et al.  GalaXC: Graph Neural Networks with Labelwise Attention for Extreme Classification , 2021, WWW.

[234]  Frank Schaich,et al.  5GNOW: non-orthogonal, asynchronous waveforms for future mobile applications , 2014, IEEE Communications Magazine.

[235]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[236]  Congyan Lang,et al.  A Self-Paced Regularization Framework for Partial-Label Learning , 2016, IEEE Transactions on Cybernetics.

[237]  Marie-Francine Moens,et al.  User Profiling through Deep Multimodal Fusion , 2018, WSDM.

[238]  Rung Ching Chen,et al.  Semi-supervised multi-label feature selection via label correlation analysis with l1-norm graph embedding , 2017, Image Vis. Comput..

[239]  Dong Yuan,et al.  Online Metric Learning for Multi-Label Classification , 2020, AAAI.

[240]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[241]  Weiwei Liu,et al.  Copula Multi-label Learning , 2019, NeurIPS.

[242]  Johannes Fürnkranz,et al.  An Evaluation of Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain , 2007, LWA.

[243]  Zhi-Hua Zhou,et al.  Multi-Label Learning with Weak Label , 2010, AAAI.

[244]  Jianghong Ma,et al.  Label-specific feature selection and two-level label recovery for multi-label classification with missing labels , 2019, Neural Networks.

[245]  Zhiyuan Liu,et al.  CAIL2018: A Large-Scale Legal Dataset for Judgment Prediction , 2018, ArXiv.

[246]  Manik Varma,et al.  DECAF: Deep Extreme Classification with Label Features , 2021, WSDM.

[247]  Leysia Palen,et al.  Microblogging during two natural hazards events: what twitter may contribute to situational awareness , 2010, CHI.

[248]  Pradeep Ravikumar,et al.  PD-Sparse : A Primal and Dual Sparse Approach to Extreme Multiclass and Multilabel Classification , 2016, ICML.

[249]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[250]  Yu-Chiang Frank Wang,et al.  Deep Generative Models for Weakly-Supervised Multi-Label Classification , 2018, ECCV.

[251]  Chia-Ping Chen,et al.  AI Deep Learning with Multiple Labels for Sentiment Classification of Tweets , 2019, 2019 IEEE International Symposium on Circuits and Systems (ISCAS).

[252]  Wei Xu,et al.  CNN-RNN: A Unified Framework for Multi-label Image Classification , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[253]  Inderjit S. Dhillon,et al.  Gradient Boosted Decision Trees for High Dimensional Sparse Output , 2017, ICML.

[254]  Yu-Chiang Frank Wang,et al.  Multi-label Zero-Shot Learning with Structured Knowledge Graphs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[255]  Y. Narahari,et al.  Multi-Label Classification from Multiple Noisy Sources Using Topic Models , 2017, Inf..

[256]  Piyush Rai,et al.  Scalable Generative Models for Multi-label Learning with Missing Labels , 2017, ICML.

[257]  D. Rubinow,et al.  Impaired recognition of affect in facial expression in depressed patients , 1992, Biological Psychiatry.

[258]  Feiping Nie,et al.  SVM based multi-label learning with missing labels for image annotation , 2018, Pattern Recognit..

[259]  Geoffrey E. Hinton,et al.  A Simple Framework for Contrastive Learning of Visual Representations , 2020, ICML.

[260]  Shao-Yuan Li,et al.  Multi-Label Learning from Crowds , 2019, IEEE Transactions on Knowledge and Data Engineering.

[261]  Miao Xu,et al.  Speedup Matrix Completion with Side Information: Application to Multi-Label Learning , 2013, NIPS.