Antimycin A mimics a cell-death-inducing Bcl-2 homology domain 3

The Bcl-2-related survival proteins confer cellular resistance to a wide range of agents. Bcl-xL-expressing hepatocyte cell lines are resistant to tumour necrosis factor and anti-cancer drugs, but are more sensitive than isogenic control cells to antimycin A, an inhibitor of mitochondrial electron transfer. Computational molecular docking analysis predicted that antimycin A interacts with the Bcl-2 homology domain 3 (BH3)-binding hydrophobic groove of Bcl-xL. We demonstrate that antimycin A and a Bak BH3 peptide bind competitively to recombinant Bcl-2. Antimycin A and BH3 peptide both induce mitochondrial swelling and loss of ΔΨm on addition to mitochondria expressing Bcl-xL. The 2-methoxy derivative of antimycin A3 is inactive as an inhibitor of cellular respiration but still retains toxicity for Bcl-xL+ cells and mitochondria. Finally, antimycin A inhibits the pore-forming activity of Bcl-x L in synthetic liposomes, demonstrating that a small non-peptide ligand can directly inhibit the function of Bcl-2-related proteins.

[1]  K. Kinnally,et al.  The effect of antimycin A on mouse liver inner mitochondrial membrane channel activity. , 1992, The Journal of biological chemistry.

[2]  P. Paty,et al.  Mitochondrial Proliferation and Paradoxical Membrane Depolarization during Terminal Differentiation and Apoptosis in a Human Colon Carcinoma Cell Line , 1997, The Journal of cell biology.

[3]  T. Hennet,et al.  Expression of BCL-2 protein enhances the survival of mouse fibrosarcoid cells in tumor necrosis factor-mediated cytotoxicity. , 1993, Cancer research.

[4]  Andy J. Minn,et al.  Bcl-xL forms an ion channel in synthetic lipid membranes , 1997, Nature.

[5]  R. Meadows,et al.  Structure of Bcl-xL-Bak Peptide Complex: Recognition Between Regulators of Apoptosis , 1997, Science.

[6]  J Deisenhofer,et al.  Crystal structure of the cytochrome bc1 complex from bovine heart mitochondria. , 1997, Science.

[7]  P. Clarke,et al.  Regulation of apoptosis by BH3 domains in a cell-free system , 1997, Current Biology.

[8]  J. Xiang,et al.  BAX-induced cell death may not require interleukin 1 beta-converting enzyme-like proteases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[9]  G. Kroemer,et al.  The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition , 1998, Oncogene.

[10]  Masashi Narita,et al.  Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC , 1999, Nature.

[11]  Matthew J. Brauer,et al.  Modulation of apoptosis by the widely distributed Bcl-2 homologue Bak , 1995, Nature.

[12]  G. Steele,et al.  Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[13]  F. Gonzalez-crussi,et al.  Crossing the threshold , 1996, Nature.

[14]  L. Scorrano,et al.  The mitochondrial permeability transition , 2022, BioFactors.

[15]  E. C. Slater,et al.  The allosteric binding of antimycin to cytochrome b in the mitochondrial membrane. , 1972, Biochimica et biophysica acta.

[16]  J. P. Dickie,et al.  The Chemistry of Antimycin A. X. Structure of the Antimycins1 , 1961 .

[17]  G. Kroemer,et al.  Mitochondrial control of nuclear apoptosis , 1996, The Journal of experimental medicine.

[18]  G. Kroemer,et al.  Bcl-2 and Bcl-XL antagonize the mitochondrial dysfunction preceding nuclear apoptosis induced by chemotherapeutic agents. , 1997, Cancer research.

[19]  S. Korsmeyer,et al.  Inhibition of virus-induced neuronal apoptosis by Bax , 1999, Nature Medicine.

[20]  R. Lutz,et al.  Bak BH3 Peptides Antagonize Bcl-xL Function and Induce Apoptosis through Cytochrome c-independent Activation of Caspases* , 1999, The Journal of Biological Chemistry.

[21]  C. Rudin,et al.  Expression of bcl-xL can confer a multidrug resistance phenotype. , 1995, Blood.

[22]  G. Kroemer [Mitochondrial control of apoptosis]. , 2001, Bulletin de l'Academie nationale de medecine.

[23]  T. Chittenden,et al.  A conserved domain in Bak, distinct from BH1 and BH2, mediates cell death and protein binding functions. , 1995, The EMBO journal.

[24]  D. Fisher Apoptosis in cancer therapy: Crossing the threshold , 1994, Cell.

[25]  C. Franceschi,et al.  JC‐1, but not DiOC6(3) or rhodamine 123, is a reliable fluorescent probe to assess ΔΨ changes in intact cells: implications for studies on mitochondrial functionality during apoptosis , 1997, FEBS letters.

[26]  D G Kirsch,et al.  Modulation of cell death by Bcl-XL through caspase interaction. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. V. Heiden,et al.  Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. , 1999, Molecular cell.

[28]  G. Merlino,et al.  Establishment and characterization of differentiated, nontransformed hepatocyte cell lines derived from mice transgenic for transforming growth factor alpha. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[29]  L. Mayer,et al.  Vesicles of variable sizes produced by a rapid extrusion procedure. , 1986, Biochimica et biophysica acta.

[30]  F. Strong,et al.  The Isolation and Properties of Antimycin A , 1949 .

[31]  R. Schreiber,et al.  Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death , 1990, Nature.

[32]  C. Franceschi,et al.  A new method for the cytofluorimetric analysis of mitochondrial membrane potential using the J-aggregate forming lipophilic cation 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide (JC-1). , 1993, Biochemical and biophysical research communications.

[33]  G. Kroemer,et al.  Reduction in mitochondrial potential constitutes an early irreversible step of programmed lymphocyte death in vivo , 1995, The Journal of experimental medicine.

[34]  Ruedi Aebersold,et al.  Molecular characterization of mitochondrial apoptosis-inducing factor , 1999, Nature.

[35]  E. Cheng,et al.  Conversion of Bcl-2 to a Bax-like death effector by caspases. , 1997, Science.

[36]  G. Merlino,et al.  Autonomous growth in serum-free medium and production of hepatocellular carcinomas by differentiated hepatocyte lines that overexpress transforming growth factor alpha 1. , 1994, Cancer research.

[37]  T. Chittenden,et al.  Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Y Li,et al.  [Mitochondria and apoptosis]. , 2000, Zhonghua yu fang yi xue za zhi [Chinese journal of preventive medicine].

[39]  C. Thompson,et al.  Bcl-2-family proteins: the role of the BH3 domain in apoptosis. , 1998, Trends in cell biology.

[40]  A. Davies,et al.  Bax promotes neuronal survival and antagonises the survival effects of neurotrophic factors. , 1996, Development.

[41]  M. V. Heiden,et al.  Bcl-xL Regulates the Membrane Potential and Volume Homeostasis of Mitochondria , 1997, Cell.

[42]  H. Iwamura,et al.  A model of antimycin A binding based on structure-activity studies of synthetic antimycin A analogues. , 1995, Biochimica et biophysica acta.

[43]  J. P. Dickie,et al.  THE CHEMISTRY OF ANTIMYCIN A. IX. STRUCTURE OF THE ANTIMYCINS , 1960 .

[44]  S. Korsmeyer,et al.  Solution Structure of the Proapoptotic Molecule BID A Structural Basis for Apoptotic Agonists and Antagonists , 1999, Cell.

[45]  I. Kuntz Structure-Based Strategies for Drug Design and Discovery , 1992, Science.

[46]  D. Green,et al.  The Release of Cytochrome c from Mitochondria: A Primary Site for Bcl-2 Regulation of Apoptosis , 1997, Science.

[47]  H. Iwamura,et al.  Structural factors of antimycin A molecule required for inhibitory action. , 1994, Biochimica et biophysica acta.

[48]  J C Stewart,et al.  Colorimetric determination of phospholipids with ammonium ferrothiocyanate. , 1980, Analytical biochemistry.