Design and synthesis of single phase Hf0.25Zr0.25Ce0.25Y0.125Si0.125O2-δ high-entropy ceramics

[1]  Taeseup Song,et al.  Glass-like thermal conductivity in mass-disordered high-entropy (Y, Yb)2(Ti, Zr, Hf)2O7 for thermal barrier material , 2021 .

[2]  Z. Jiao,et al.  Nanoindentation of single-crystal and polycrystalline yttria-stabilized zirconia: A comparative study by experiments and molecular dynamics simulations , 2021 .

[3]  K. Edalati,et al.  High-entropy ceramics: Review of principles, production and applications , 2021, Materials Science and Engineering: R: Reports.

[4]  Yanchun Zhou,et al.  High-entropy ceramics: Present status, challenges, and a look forward , 2021, Journal of Advanced Ceramics.

[5]  R. Mandal,et al.  Ferromagnetic Bismuth-Substituted CeO2 Nanostructures and Prevalence of Antiferromagnetic Clusters , 2020, Journal of Superconductivity and Novel Magnetism.

[6]  Ashutosh Kumar,et al.  Effective thermal conductivity of SrBi4Ti4O15-La0.7Sr0.3MnO3 oxide composite: Role of particle size and interface thermal resistance , 2020, Journal of the European Ceramic Society.

[7]  X. Ren,et al.  A multicomponent γ-type (Gd1/6Tb1/6Dy1/6Tm1/6Yb1/6Lu1/6)2Si2O7 disilicate with outstanding thermal stability , 2020 .

[8]  L. Williams,et al.  Semiconducting High-Entropy Chalcogenide Alloys with Ambi-ionic Entropy Stabilization and Ambipolar Doping , 2020 .

[9]  Yanchun Zhou,et al.  Theoretical prediction on thermal and mechanical properties of high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)C by deep learning potential , 2020 .

[10]  Jiaqiang Yan,et al.  The emergent field of high entropy oxides: Design, prospects, challenges, and opportunities for tailoring material properties , 2020 .

[11]  S. Curtarolo,et al.  High-entropy ceramics , 2020, Nature Reviews Materials.

[12]  Yanchun Zhou,et al.  High entropy (Yb0.25Y0.25Lu0.25Er0.25)2SiO5 with strong anisotropy in thermal expansion , 2020 .

[13]  Renkun Chen,et al.  From high-entropy ceramics to compositionally-complex ceramics: A case study of fluorite oxides , 2019, Journal of the European Ceramic Society.

[14]  M. Reece,et al.  Review of high entropy ceramics: design, synthesis, structure and properties , 2019, Journal of Materials Chemistry A.

[15]  Caizhuang Wang,et al.  First‐principles study, fabrication, and characterization of (Hf 0.2 Zr 0.2 Ta 0.2 Nb 0.2 Ti 0.2 )C high‐entropy ceramic , 2019, Journal of the American Ceramic Society.

[16]  L. An,et al.  A five-component entropy-stabilized fluorite oxide , 2018, Journal of the European Ceramic Society.

[17]  Tyler J. Harrington,et al.  High-entropy fluorite oxides , 2018, Journal of the European Ceramic Society.

[18]  C. Prajapat,et al.  Investigation of magnetic properties for Hf4+ substituted CeO2 nanoparticles for spintronic applications , 2018, Journal of Materials Science: Materials in Electronics.

[19]  C. Kübel,et al.  Multicomponent equiatomic rare earth oxides , 2017 .

[20]  E. Levänen,et al.  Reaction Heat Utilization in Aluminosilicate-Based Ceramics Synthesis and Sintering , 2017 .

[21]  R. W. Jackson,et al.  Thermal expansion behavior of new Co-based alloys and implications for coatings , 2016 .

[22]  Masato Kato,et al.  An Evaluation of the Thermophysical Properties of Stoichiometric CeO2 in Comparison to UO2 and PuO2 , 2014 .

[23]  R. M. Wentzcovitch,et al.  Accurate projected augmented wave (PAW) datasets for rare-earth elements (RE = La–Lu) , 2014, 1408.0863.

[24]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[25]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[26]  M. Mori,et al.  Thermal expansion coefficient of yttria stabilized zirconia for various yttria contents , 2005 .

[27]  S. Ranganathan,et al.  Alloyed pleasures: Multimetallic cocktails , 2003 .

[28]  Christos Argirusis,et al.  Oxygen diffusion in yttria stabilised zirconia?experimental results and molecular dynamics calculationsPresented at the 78th International Bunsen Discussion Meeting on , 2003 .

[29]  N. Padture,et al.  Thermal conductivity of dense and porous yttria-stabilized zirconia , 2001 .

[30]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[31]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[32]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[33]  D. M. Rowe,et al.  Phonon scattering at grain boundaries in heavily doped fine-grained silicon–germanium alloys , 1981, Nature.

[34]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[35]  J. Hubbard Electron correlations in narrow energy bands , 1963, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[36]  A. Ghoshal,et al.  Sand corrosion, thermal expansion, and ablation of medium‐ and high‐entropy compositionally complex fluorite oxides , 2020 .

[37]  Paul G. Klemens,et al.  Ceramic materials for thermal barrier coatings , 2004 .