Oscillatory Synchronization in Large-Scale Cortical Networks Predicts Perception

Normal brain function requires the dynamic interaction of functionally specialized but widely distributed cortical regions. Long-range synchronization of oscillatory signals has been suggested to mediate these interactions within large-scale cortical networks, but direct evidence is sparse. Here we show that oscillatory synchronization is organized in such large-scale networks. We implemented an analysis approach that allows for imaging synchronized cortical networks and applied this technique to EEG recordings in humans. We identified two networks: beta-band synchronization (~20 Hz) in a fronto-parieto-occipital network and gamma-band synchronization (~80 Hz) in a centro-temporal network. Strong perceptual correlates support their functional relevance: the strength of synchronization within these networks predicted the subjects' perception of an ambiguous audiovisual stimulus as well as the integration of auditory and visual information. Our results provide evidence that oscillatory neuronal synchronization mediates neuronal communication within frequency-specific, large-scale cortical networks.

[1]  W. Singer,et al.  Dynamic predictions: Oscillations and synchrony in top–down processing , 2001, Nature Reviews Neuroscience.

[2]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[3]  John J. Foxe,et al.  Crossmodal binding through neural coherence: implications for multisensory processing , 2008, Trends in Neurosciences.

[4]  R. Shapley,et al.  LFP power spectra in V1 cortex: the graded effect of stimulus contrast. , 2005, Journal of neurophysiology.

[5]  M. Posner,et al.  Attentional networks , 1994, Trends in Neurosciences.

[6]  G. Rees,et al.  Neural correlates of perceptual rivalry in the human brain. , 1998, Science.

[7]  J. Rieger,et al.  Audiovisual Temporal Correspondence Modulates Human Multisensory Superior Temporal Sulcus Plus Primary Sensory Cortices , 2007, The Journal of Neuroscience.

[8]  T. Sejnowski,et al.  Removing electroencephalographic artifacts by blind source separation. , 2000, Psychophysiology.

[9]  Asif A. Ghazanfar,et al.  Integration of Bimodal Looming Signals through Neuronal Coherence in the Temporal Lobe , 2008, Current Biology.

[10]  Chris I. Baker,et al.  Integration of Visual and Auditory Information by Superior Temporal Sulcus Neurons Responsive to the Sight of Actions , 2005, Journal of Cognitive Neuroscience.

[11]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  W. Drongelen,et al.  Localization of brain electrical activity via linearly constrained minimum variance spatial filtering , 1997, IEEE Transactions on Biomedical Engineering.

[13]  D. Thomson,et al.  Spectrum estimation and harmonic analysis , 1982, Proceedings of the IEEE.

[14]  W. Singer,et al.  Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[15]  J. Pernier,et al.  Stimulus Specificity of Phase-Locked and Non-Phase-Locked 40 Hz Visual Responses in Human , 1996, The Journal of Neuroscience.

[16]  Bijan Pesaran,et al.  Free choice activates a decision circuit between frontal and parietal cortex , 2008, Nature.

[17]  Leslie P. Keniston,et al.  Auditory influences on non-auditory cortices , 2009, Hearing Research.

[18]  P. König,et al.  Top-down processing mediated by interareal synchronization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  A. Ghazanfar,et al.  Is neocortex essentially multisensory? , 2006, Trends in Cognitive Sciences.

[20]  J. Driver,et al.  Multisensory Interplay Reveals Crossmodal Influences on ‘Sensory-Specific’ Brain Regions, Neural Responses, and Judgments , 2008, Neuron.

[21]  S. Yantis,et al.  Selective visual attention and perceptual coherence , 2006, Trends in Cognitive Sciences.

[22]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[23]  G. Ermentrout,et al.  Gamma rhythms and beta rhythms have different synchronization properties. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[24]  C. Gross,et al.  A neuronal representation of the location of nearby sounds , 1999, Nature.

[25]  N. Logothetis,et al.  Visual modulation of neurons in auditory cortex. , 2008, Cerebral cortex.

[26]  Christian Büchel,et al.  Neural Coupling Binds Visual Tokens to Moving Stimuli , 2005, The Journal of Neuroscience.

[27]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[28]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[29]  I. Nelken,et al.  Transient Induced Gamma-Band Response in EEG as a Manifestation of Miniature Saccades , 2008, Neuron.

[30]  R. Desimone,et al.  High-Frequency, Long-Range Coupling Between Prefrontal and Visual Cortex During Attention , 2009, Science.

[31]  Robert Oostenveld,et al.  Enhanced EEG gamma-band activity reflects multisensory semantic matching in visual-to-auditory object priming , 2008, NeuroImage.

[32]  G. Buzsáki,et al.  Neuronal Oscillations in Cortical Networks , 2004, Science.

[33]  Ankoor S. Shah,et al.  An oscillatory hierarchy controlling neuronal excitability and stimulus processing in the auditory cortex. , 2005, Journal of neurophysiology.

[34]  A. Engel,et al.  Neuronal Synchronization along the Dorsal Visual Pathway Reflects the Focus of Spatial Attention , 2008, Neuron.

[35]  Gareth R. Barnes,et al.  The missing link: analogous human and primate cortical gamma oscillations , 2005, NeuroImage.

[36]  Robert Oostenveld,et al.  Neural Mechanisms of Visual Attention : How Top-Down Feedback Highlights Relevant Locations , 2007 .

[37]  W. Singer,et al.  Neural Synchrony in Brain Disorders: Relevance for Cognitive Dysfunctions and Pathophysiology , 2006, Neuron.

[38]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[39]  Christian Gerloff,et al.  Larger interregional synchrony is associated with greater behavioral success in a complex sensory integration task in humans. , 2005, Cerebral cortex.

[40]  Sidney S. Simon,et al.  Merging of the Senses , 2008, Front. Neurosci..

[41]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[42]  S. Bressler,et al.  Large-scale brain networks in cognition: emerging methods and principles , 2010, Trends in Cognitive Sciences.

[43]  Katherine M. Armstrong,et al.  Visuomotor Origins of Covert Spatial Attention , 2003, Neuron.

[44]  U. Noppeney,et al.  Audiovisual Synchrony Improves Motion Discrimination via Enhanced Connectivity between Early Visual and Auditory Areas , 2010, The Journal of Neuroscience.

[45]  C. Spence,et al.  Multisensory perception: Beyond modularity and convergence , 2000, Current Biology.

[46]  S. Bressler,et al.  Episodic multiregional cortical coherence at multiple frequencies during visual task performance , 1993, Nature.

[47]  D. McCormick,et al.  Rapid Neocortical Dynamics: Cellular and Network Mechanisms , 2009, Neuron.

[48]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[49]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[50]  C. Schroeder,et al.  Neuronal Oscillations and Multisensory Interaction in Primary Auditory Cortex , 2007, Neuron.

[51]  Kimron Shapiro,et al.  Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Tallon-Baudry,et al.  Neural Dissociation between Visual Awareness and Spatial Attention , 2008, The Journal of Neuroscience.

[53]  Ranulfo Romo,et al.  Neural encoding of auditory discrimination in ventral premotor cortex , 2009, Proceedings of the National Academy of Sciences.

[54]  Partha P. Mitra,et al.  Sampling Properties of the Spectrum and Coherency of Sequences of Action Potentials , 2000, Neural Computation.

[55]  R. Knight,et al.  Prefrontal modulation of visual processing in humans , 2000, Nature Neuroscience.

[56]  J. Martinerie,et al.  The brainweb: Phase synchronization and large-scale integration , 2001, Nature Reviews Neuroscience.

[57]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[58]  Matthias M. Müller,et al.  Selective visual-spatial attention alters induced gamma band responses in the human EEG , 1999, Clinical Neurophysiology.

[59]  F. Varela,et al.  Measuring phase synchrony in brain signals , 1999, Human brain mapping.

[60]  P. König,et al.  A Functional Gamma-Band Defined by Stimulus-Dependent Synchronization in Area 18 of Awake Behaving Cats , 2003, The Journal of Neuroscience.

[61]  J. Palva,et al.  Neuronal synchrony reveals working memory networks and predicts individual memory capacity , 2010, Proceedings of the National Academy of Sciences.

[62]  N. Logothetis,et al.  Very slow activity fluctuations in monkey visual cortex: implications for functional brain imaging. , 2003, Cerebral cortex.

[63]  T. Sejnowski,et al.  Correlated neuronal activity and the flow of neural information , 2001, Nature Reviews Neuroscience.

[64]  Shlomit Yuval-Greenberg,et al.  Saccadic spike potentials in gamma-band EEG: Characterization, detection and suppression , 2010, NeuroImage.

[65]  G. Rees,et al.  The Neural Bases of Multistable Perception , 2022 .

[66]  Jan Kujala,et al.  Localization of correlated network activity at the cortical level with MEG , 2008, NeuroImage.

[67]  M. Hallett,et al.  Neural correlates of cross-modal binding , 2003, Nature Neuroscience.

[68]  R. Sekuler,et al.  Sound alters visual motion perception , 1997, Nature.

[69]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[70]  J Gross,et al.  REPRINTS , 1962, The Lancet.

[71]  W. Singer,et al.  Modulation of Neuronal Interactions Through Neuronal Synchronization , 2007, Science.

[72]  P. Fries A mechanism for cognitive dynamics: neuronal communication through neuronal coherence , 2005, Trends in Cognitive Sciences.

[73]  Robert Oostenveld,et al.  Population activity in the human dorsal pathway predicts the accuracy of visual motion detection. , 2007, Journal of neurophysiology.

[74]  G. Rizzolatti,et al.  Coding of peripersonal space in inferior premotor cortex (area F4). , 1996, Journal of neurophysiology.

[75]  A. Engel,et al.  High-frequency activity in human visual cortex is modulated by visual motion strength. , 2007, Cerebral cortex.

[76]  Christoph Kayser,et al.  Spatial Organization of Multisensory Responses in Temporal Association Cortex , 2009, The Journal of Neuroscience.

[77]  E. Miller,et al.  Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices , 2007, Science.

[78]  J. Kaiser,et al.  Human gamma-frequency oscillations associated with attention and memory , 2007, Trends in Neurosciences.

[79]  N. Logothetis,et al.  Multistable phenomena: changing views in perception , 1999, Trends in Cognitive Sciences.

[80]  R. Desimone,et al.  Gamma-band synchronization in visual cortex predicts speed of change detection , 2006, Nature.

[81]  J. Schoffelen,et al.  Source connectivity analysis with MEG and EEG , 2009, Human brain mapping.

[82]  C. Gross,et al.  Coding of visual space by premotor neurons. , 1994, Science.

[83]  O. Sporns,et al.  Mapping the Structural Core of Human Cerebral Cortex , 2008, PLoS biology.