A reduced-complexity algorithm for polynomial interpolation

Most traditional bivariate polynomial interpolation algorithms need to construct the Gröbner basis of a module for the interpolation result. In this paper, we present an algorithm that constructs the basis for a gradually extending submodule to save computation, based on a partial order of the elements of the submodule's Gröbner basis. It also can be generalized for negative weighted interpolation and multivariate interpolation.

[1]  Shojiro Sakata,et al.  Finding a Minimal Set of Linear Recurring Relations Capable of Generating a Given Finite Two-Dimensional Array , 1988, J. Symb. Comput..

[2]  Venkatesan Guruswami,et al.  Improved decoding of Reed-Solomon and algebraic-geometric codes , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[3]  Xiao Ma,et al.  Progressive List-Enlarged Algebraic Soft Decoding of Reed-Solomon Codes , 2012, IEEE Communications Letters.

[4]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[5]  Yingquan Wu,et al.  New List Decoding Algorithms for Reed–Solomon and BCH Codes , 2007, IEEE Transactions on Information Theory.

[6]  Alexander Vardy,et al.  The Re-Encoding Transformation in Algebraic List-Decoding of Reed–Solomon Codes , 2011, IEEE Transactions on Information Theory.

[7]  Alexander Vardy,et al.  Algebraic soft-decision decoding of Reed-Solomon codes , 2003, IEEE Trans. Inf. Theory.

[8]  Alexander Vardy,et al.  A Complexity Reducing Transformation for the Lee-O'Sullivan Interpolation Algorithm , 2007, 2007 IEEE International Symposium on Information Theory.

[9]  Kwankyu Lee,et al.  An Interpolation Algorithm using Gröbner Bases for Soft-Decision Decoding of Reed-Solomon Codes , 2006, 2006 IEEE International Symposium on Information Theory.

[10]  R. Kotter Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996 .

[11]  Ralf Koetter Fast generalized minimum-distance decoding of algebraic-geometry and Reed-Solomon codes , 1996, IEEE Trans. Inf. Theory.