An EM-based identification algorithm for a class of hybrid systems with application to power electronics

In this paper we present an identification algorithm for a class of continuous-time hybrid systems. In such systems, both continuous-time and discrete-time dynamics are involved. We apply the expectation-maximisation algorithm to obtain the maximum likelihood estimate of the parameters of a discrete-time model expressed in incremental form. The main advantage of this approach is that the continuous-time parameters can directly be recovered. The technique is particularly well suited to fast-sampling rates. As an application, we focus on a standard identification problem in power electronics. In this field, our proposed algorithm is of importance since accurate modelling of power converters is required in high- performance applications and for fault diagnosis. As an illustrative example, and to verify the performance of our proposed algorithm, we apply our results to a flying capacitor multicell converter.

[1]  N. Takorabet,et al.  Fault Analysis and Parameter Identification of Permanent-Magnet Motors by the Finite-Element Method , 2009, IEEE Transactions on Magnetics.

[2]  G. Goodwin,et al.  Identification of continuous-time state-space models from non-uniform fast-sampled data , 2011 .

[3]  António J. Marques Cardoso,et al.  An Online and Noninvasive Technique for the Condition Monitoring of Capacitors in Boost Converters , 2010, IEEE Transactions on Instrumentation and Measurement.

[4]  D.E. Quevedo,et al.  Predictive Control of a Flying Capacitor Converter , 2007, 2007 American Control Conference.

[5]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[6]  J Holtz,et al.  Power Electronics-A Continuing Challenge , 2011, IEEE Industrial Electronics Magazine.

[7]  Davide Fabiani,et al.  Searching for the factors which affect self-healing capacitor degradation under non-sinusoidal voltage , 1999 .

[8]  Thierry Meynard,et al.  Survey on Fault Operation on Multilevel Inverters , 2010, IEEE Transactions on Industrial Electronics.

[9]  Malek Ghanes,et al.  A robust sensorless output feedback controller of the induction motor drives: new design and experimental validation , 2010, Int. J. Control.

[10]  John Lygeros,et al.  Parameter identification for stochastic hybrid models of biological interaction networks , 2007, 2007 46th IEEE Conference on Decision and Control.

[11]  竹安 数博,et al.  Time series analysis and its applications , 2007 .

[12]  G. E. Taylor,et al.  Computer Controlled Systems: Theory and Design , 1985 .

[13]  Graham C. Goodwin,et al.  On identification of FIR systems having quantized output data , 2011, Autom..

[14]  B. Øksendal Stochastic differential equations : an introduction with applications , 1987 .

[15]  Daniel E. Quevedo,et al.  Model Predictive Control of an Asymmetric Flying Capacitor Converter , 2009, IEEE Transactions on Industrial Electronics.

[16]  G.C. Goodwin,et al.  Approximate EM Algorithms for Parameter and State Estimation in Nonlinear Stochastic Models , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[17]  D.E. Quevedo,et al.  Predictive control algorithm robustness for achieving fault tolerance in multicell converters , 2008, 2008 34th Annual Conference of IEEE Industrial Electronics.

[18]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[19]  Adrian Pagan,et al.  Estimation, Inference and Specification Analysis. , 1996 .

[20]  Graham C. Goodwin,et al.  Dual time-frequency domain system identification , 2012, Autom..

[21]  Daniel E. Quevedo,et al.  Finite-Control-Set Model Predictive Control With Improved Steady-State Performance , 2013, IEEE Transactions on Industrial Informatics.

[22]  Laurent Bako,et al.  Recovering piecewise affine maps by sparse optimization , 2012 .

[23]  Bimal K. Bose The past, present, and future of power electronics [Guest Introduction] , 2009 .

[24]  P. Cortes,et al.  Model Predictive Control of an AFE Rectifier With Dynamic References , 2012, IEEE Transactions on Power Electronics.

[25]  Pablo Lezana,et al.  Fault Detection on Multicell Converter Based on Output Voltage Frequency Analysis , 2009, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[26]  Stephen P. Boyd,et al.  Segmentation of ARX-models using sum-of-norms regularization , 2010, Autom..

[27]  Yantao Song,et al.  Survey on Reliability of Power Electronic Systems , 2013, IEEE Transactions on Power Electronics.

[28]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[29]  Philippe Baudesson,et al.  Fault management of multicell converters , 2002, IEEE Trans. Ind. Electron..

[30]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[31]  Bin Wu,et al.  Recent Advances and Industrial Applications of Multilevel Converters , 2010, IEEE Transactions on Industrial Electronics.

[32]  Florian Nadel,et al.  Stochastic Processes And Filtering Theory , 2016 .

[33]  B. Nahid-Mobarakeh,et al.  Online Identification of PMSM Parameters: Parameter Identifiability and Estimator Comparative Study , 2011, IEEE Transactions on Industry Applications.

[34]  Thierry Meynard,et al.  Multicell converters: basic concepts and industry applications , 2002, IEEE Trans. Ind. Electron..

[35]  Malek Ghanes,et al.  Observability and observer design for hybrid multicell choppers , 2010, Int. J. Control.

[36]  D. Talay Numerical solution of stochastic differential equations , 1994 .

[37]  César A. Silva,et al.  Experimental sensorless vector control performance of a DFIG based on an extended Kalman filter , 2012, IECON 2012 - 38th Annual Conference on IEEE Industrial Electronics Society.

[38]  Doreen Meier,et al.  Introduction To Stochastic Control Theory , 2016 .

[39]  Manfred Morari,et al.  Hybrid Model Predictive Control of the Step-Down DC–DC Converter , 2008, IEEE Transactions on Control Systems Technology.

[40]  Didier Maquin,et al.  Parameter estimation of switching piecewise linear system , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[41]  James D. Hamilton Analysis of time series subject to changes in regime , 1990 .

[42]  Eric Moulines,et al.  Inference in hidden Markov models , 2010, Springer series in statistics.

[43]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[44]  Jean Buisson,et al.  Alternative control methods for DC–DC converters: An application to a four‐level three‐cell DC–DC converter , 2011 .

[45]  Graham C. Goodwin,et al.  Connections between incremental and continuous-time EM algorithm for state space identification , 2012 .

[46]  Brett Ninness,et al.  Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..

[47]  M. Naumović Sampling in Digital Signal Processing and Control , 2001 .

[48]  Alberto Bemporad,et al.  A bounded-error approach to piecewise affine system identification , 2005, IEEE Transactions on Automatic Control.

[49]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[50]  Stefan Almer,et al.  Piecewise affine modeling and control of a step-up DC-DC converter , 2010, Proceedings of the 2010 American Control Conference.

[51]  Haikady N. Nagaraja,et al.  Inference in Hidden Markov Models , 2006, Technometrics.

[52]  Matthew Senesky,et al.  Hybrid Modelling and Control of Power Electronics , 2003, HSCC.

[53]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[54]  L. Williams,et al.  Contents , 2020, Ophthalmology (Rochester, Minn.).

[55]  Peter Tavner,et al.  Condition Monitoring for Device Reliability in Power Electronic Converters: A Review , 2010, IEEE Transactions on Power Electronics.