Towards a Science of Complexity in Spatial-Economic Systems

Conventional (spatial) economic equilibrium models have usually taken for granted the existence of well-behaved functional forms of state equations, so that existence conditions for optimal solutions could in principle be established. Irregular behaviour was an exception in the tradition of equilibrium analysis. Recent years have witnessed among economists an increasing popularity of nonlinear dynamic models. The wide range of theories and reflections on evolutionary dynamic systems reflects the continuously rising interest of economists in ‘economics without equilibrium’ (Kaldor 1985). Kaldor notes in the Okun Memorial Lectures: “it seems clear that if we are to get out of the present impasse we must begin by constructing a different kind of abstract model, one that recognizes from the beginning that time is a continuing and irreversible process; that it is impossible to assume the constancy of anything over time, such as the supply of labour or capital, the psychological preferences for commodities, the nature and number of commodities, or technical knowledge” (Kaldor 1985 p 61).

[1]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[2]  W. Brock Distinguishing random and deterministic systems: Abridged version , 1986 .

[3]  René Thom,et al.  Structural stability and morphogenesis , 1977, Pattern Recognit..

[4]  Peter Nijkamp,et al.  Nonlinear Evolution of Spatial Economic Systems , 1993 .

[5]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  Richard H. Day Dynamical Systems Theory and Complicated Economic Behavior , 1985 .

[8]  Peter Nijkamp,et al.  Interaction, evolution, and chaos in space , 1992 .

[9]  Tony Crilly,et al.  The roots of chaos—a brief guide , 1991 .

[10]  P. Samuelson,et al.  Foundations of Economic Analysis. , 1948 .

[11]  R. Nallari MODELS OF TECHNOLOGICAL CHANGE , 1992 .

[12]  Dennis L. Meadows,et al.  Toward Global Equilibrium: Collected Papers , 1973 .

[13]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[14]  J. Guckenheimer Sensitive dependence to initial conditions for one dimensional maps , 1979 .

[15]  N. Georgescu-Roegen Dynamic models and economic growth , 1975 .

[16]  R. Frisch Propagation problems and impulse problems in dynamic economics , 1933 .

[17]  Michael Batty,et al.  The Fractal Simulation of Urban Structure , 1986 .

[18]  Charles Perrings,et al.  Towards an ecological economics of sustainability , 1992 .

[19]  A. Lichtenberg,et al.  Regular and Stochastic Motion , 1982 .

[20]  David Ruelle,et al.  Occurrence of strange Axiom A attractors near quasiperiodic flows on $T^{m}$,$\,m\geq 3$ , 1979 .

[21]  Murray Z. Frank,et al.  CHAOTIC DYNAMICS IN ECONOMIC TIME‐SERIES , 1988 .

[22]  C. Mira,et al.  Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .

[23]  C. H. Judd,et al.  Evolution and consciousness. , 1910 .

[24]  R. Levins Evolution in Changing Environments , 1968 .

[25]  Jean-Michel Grandmont Expectations driven business cycles , 1991 .

[26]  M. Morishima General Equilibrium Theory in the Twenty-First Century , 1991 .

[27]  J. Barkley Rosser,et al.  From Catastrophe to Chaos: A General Theory of Economic Discontinuities , 1991 .

[28]  Vijay Mahajan,et al.  New Product Diffusion Models in Marketing: A Review and Directions for Research: , 1990 .

[29]  J. Forrester Principles of systems : text and workbook, chapters 1 through 10 , 1968 .

[30]  G. Sell,et al.  The Hopf Bifurcation and Its Applications , 1976 .

[31]  R. Jackman,et al.  Prices and Quantities. , 1982 .

[32]  Alistair I. Mees,et al.  The revival of cities in medieval Europe: An application of catastrophe theory , 1975 .

[33]  Henri Poincaré Science and Method , 1914 .

[34]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[35]  Ǻ. Andersson,et al.  Creative nodes, logistical networks, and the future of the metropolis , 1987 .

[36]  John L. Casti,et al.  Economic Evolution and Structural Adjustment , 1987 .

[37]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[38]  F. Takens,et al.  Occurrence of strange AxiomA attractors near quasi periodic flows onTm,m≧3 , 1978 .

[39]  D. Dendrinos,et al.  Urban evolution : studies in the mathematical ecology of cities , 1985 .

[40]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[41]  Anthony Hughes,et al.  An application of catastrophe theory , 1977, The Mathematical Gazette.

[42]  F. Takens,et al.  On the nature of turbulence , 1971 .

[43]  H. E. Nusse Asymptotically periodic behaviour in the dynamics of chaotic mappings , 1987 .

[44]  J. N. Kapur,et al.  SOME POSSIBLE MODELS FOR TECHNOLOGICAL INNOVATION DIFFUSION : EXPLOITING ANALOGOUS CHARACTERISTICS OF ENTROPIC MEASURES , 1992 .

[45]  Alan Wilson,et al.  Catastrophe theory and bifurcation , 1981 .

[46]  Peter H. Richter,et al.  The Beauty of Fractals , 1988, 1988.

[47]  Thomas J. Peters,et al.  Thriving on Chaos: Handbook for a Management Revolution , 1988 .

[48]  R. Levins Evolution in Changing Environments: Some Theoretical Explorations. (MPB-2) , 1968 .

[49]  Arne Collen The Foundation of Science , 1997 .

[50]  Richard Krammer,et al.  Economic Essays in Honour of Gustav Cassel , 1934 .

[51]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[52]  Peter Nijkamp,et al.  Competition and complexity in spatially connected networks , 1995 .

[53]  Charles Perrings,et al.  Ecological Resilience in the Sustainability of Economic Development , 1994, Économie appliquée.

[54]  Peter Nijkamp,et al.  Spatial competition and ecologically based socio-economic models , 1992 .

[55]  C. Sparrow,et al.  Bifurcation and chaotic behaviour in simple feedback systems. , 1980, Journal of theoretical biology.

[56]  David Kelsey,et al.  THE ECONOMICS OF CHAOS OR THE CHAOS OF ECONOMICS , 1988 .

[57]  Peter Nijkamp,et al.  Non-linear Evolution of Dynamic Spatial Systems: The Relevance of Chaos and Ecologically-based Models , 1995 .

[58]  A. V. Holden,et al.  2. A graphical zoo of strange and peculiar attractors , 1986 .

[59]  N. Kaldor Economics without Equilibrium , 2020 .

[60]  Peter Nijkamp,et al.  Long-term economic fluctuations: a spatial view , 1984 .

[61]  Gregory L. Baker,et al.  Chaotic Dynamics: An Introduction , 1990 .

[62]  Paul Manneville,et al.  Intermittency and the Lorenz model , 1979 .

[63]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[64]  Pierre Frankhauser,et al.  Aspects fractals des structures urbaines , 1990 .

[65]  M. Fischer,et al.  Spatial Choices and Processes , 1990 .