Rigid Body Dynamics Algorithms

Rigid Body Dynamics Algorithms presents the subject of computational rigid-body dynamics through the medium of spatial 6D vector notation. It explains how to model a rigid-body system and how to analyze it, and it presents the most comprehensive collection of the best rigid-bodydynamics algorithms to be found in a single source. The use of spatial vector notation greatly reduces the volume of algebra which allows systems to be described using fewer equations and fewer quantities. It also allows problems to be solved in fewer steps, and solutions to be expressed more succinctly. In addition algorithms are explained simply and clearly, and are expressed in a compact form. The use of spatial vector notation facilitates the implementation of dynamics algorithms on a computer: shorter, simpler code that is easier to write, understand and debug, with no loss of efficiency.

[1]  Julius Plucker,et al.  Fundamental Views Regarding Mechanics , 2022 .

[2]  J. D. Everett A Treatise on the Theory of Screws , 1901, Nature.

[3]  R. Mises Motorrechnung, ein neues Hilfsmittel der Mechanik , 2022 .

[4]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[5]  L Howarth,et al.  Principles of Dynamics , 1964 .

[6]  William W. Hooker,et al.  The Dynamical Attitude Equations for n-Body Satellite , 1965 .

[7]  J. Uicker Dynamic Force Analysis of Spatial Linkages , 1967 .

[8]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .

[9]  W. Hooker A set of r dynamical attitude equations for an arbitrary n-body satellite having r rotational degrees of freedom , 1970 .

[10]  L. Woo,et al.  Application of Line geometry to theoretical kinematics and the kinematic analysis of mechanical systems , 1970 .

[11]  Bernard Roth,et al.  The Near-Minimum-Time Control Of Open-Loop Articulated Kinematic Chains , 1971 .

[12]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[13]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[14]  Baldine-brunel Paul,et al.  Analytical dynamics of mechanisms—a computer oriented overview , 1975 .

[15]  M. Vukobratovic,et al.  Dynamics of articulated open-chain active mechanisms , 1976 .

[16]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[17]  M. A. Chace,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1 , 1977 .

[18]  J. Rooney A Survey of Representations of Spatial Rotation about a Fixed Point , 1977 .

[19]  N. Orlandea,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 2 , 1977 .

[20]  K. H. Hunt,et al.  Kinematic geometry of mechanisms , 1978 .

[21]  David E. Orin,et al.  Kinematic and kinetic analysis of open-chain linkages utilizing Newton-Euler methods , 1979 .

[22]  J. Y. S. Luh,et al.  Resolved-acceleration control of mechanical manipulators , 1980 .

[23]  J. Y. S. Luh,et al.  On-Line Computational Scheme for Mechanical Manipulators , 1980 .

[24]  John M. Hollerbach,et al.  A Recursive Lagrangian Formulation of Maniputator Dynamics and a Comparative Study of Dynamics Formulation Complexity , 1980, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Per Lötstedt Coulomb Friction in Two-Dimensional Rigid Body Systems , 1981 .

[26]  David E. Orin,et al.  Efficient Dynamic Computer Simulation of Robotic Mechanisms , 1982 .

[27]  J. Pasciak,et al.  Computer solution of large sparse positive definite systems , 1982 .

[28]  Per Lötstedt Mechanical Systems of Rigid Bodies Subject to Unilateral Constraints , 1982 .

[29]  R. Featherstone The Calculation of Robot Dynamics Using Articulated-Body Inertias , 1983 .

[30]  J. Murray,et al.  ARM: An algebraic robot dynamic modeling program , 1984, ICRA.

[31]  Per Lötstedt Numerical Simulation of Time-Dependent Contact and Friction Problems in Rigid Body Mechanics , 1984 .

[32]  Richard H. Lathrop,et al.  Parallelism in Manipulator Dynamics , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[33]  Richard W. Longman,et al.  Satellite mounted robot manipulators - New kinematics and reaction moment compensation , 1985 .

[34]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[35]  Martin Otter,et al.  A very efficient algorithm for the simulation of robots and similar multibody systems without invers , 1986 .

[36]  Giuseppe Rodriguez,et al.  Kalman filtering, smoothing, and recursive robot arm forward and inverse dynamics , 1987, IEEE Journal on Robotics and Automation.

[37]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[38]  John J. Murray,et al.  Customized computational robot dynamics , 1987, J. Field Robotics.

[39]  Roy Featherstone,et al.  Robot Dynamics Algorithms , 1987 .

[40]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[41]  I. Duff,et al.  Direct Methods for Sparse Matrices , 1987 .

[42]  Rajnikant V. Patel,et al.  Efficient modeling and computation of manipulator dynamics using orthogonal Cartesian tensors , 1988, IEEE J. Robotics Autom..

[43]  S. Sathiya Keerthi,et al.  A fast procedure for computing the distance between complex objects in three-dimensional space , 1988, IEEE J. Robotics Autom..

[44]  Abhinandan Jain,et al.  A spatial operator algebra for manipulator modeling and control , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[45]  Rajnikant V. Patel,et al.  Efficient computation of manipulator inertia matrices and the direct dynamics problem , 1989, IEEE Trans. Syst. Man Cybern..

[46]  John J. Craig,et al.  Introduction to robotics - mechanics and control (2. ed.) , 1989 .

[47]  Kazuya Yoshida,et al.  Resolved motion rate control of space manipulators with generalized Jacobian matrix , 1989, IEEE Trans. Robotics Autom..

[48]  James E. Bobrow,et al.  A Direct Minimization Approach for Obtaining the Distance between Convex Polyhedra , 1989, Int. J. Robotics Res..

[49]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[50]  Bernard Friedland,et al.  On the Modeling and Simulation of Friction , 1990, 1990 American Control Conference.

[51]  A. A. Goldenberg,et al.  An algorithm for efficient computation of dynamics of robotic manipulators , 1990, J. Field Robotics.

[52]  D. E. Rosenthal An Order n Formulation for Robotic Ststems , 1990 .

[53]  Steven Dubowsky,et al.  The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach , 1990, Int. J. Robotics Res..

[54]  Joseph Duffy,et al.  The fallacy of modern hybrid control theory that is based on "orthogonal complements" of twist and wrench spaces , 1990, J. Field Robotics.

[55]  Rajnikant V. Patel,et al.  Dynamic analysis of robot manipulators - a Cartesian tensor approach , 1991, The Kluwer international series in engineering and computer science.

[56]  Abhinandan Jain Unified formulation of dynamics for serial rigid multibody systems , 1991 .

[57]  David E. Orin,et al.  Alternate Formulations for the Manipulator Inertia Matrix , 1991, Int. J. Robotics Res..

[58]  Steven Dubowsky,et al.  The kinematics, dynamics, and control of free-flying and free-floating space robotic systems , 1993, IEEE Trans. Robotics Autom..

[59]  Abhinandan Jain,et al.  An analysis of the kinematics and dynamics of underactuated manipulators , 1993, IEEE Trans. Robotics Autom..

[60]  Z. Vafa,et al.  On the Dynamics of Space Manipulators Using the Virtual Manipulator, with Applications to Path Planning , 1993 .

[61]  K. W. Lilly,et al.  Efficient Dynamic Simulation of Robotic Mechanisms , 1993 .

[62]  Carlos Canudas de Wit,et al.  A survey of models, analysis tools and compensation methods for the control of machines with friction , 1994, Autom..

[63]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[64]  Scott McMillan,et al.  Computational dynamics for robotic systems on land and under water , 1995 .

[65]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[66]  Scott McMillan,et al.  Efficient computation of articulated-body inertias using successive axial screws , 1995, IEEE Trans. Robotics Autom..

[67]  Scott McMillan,et al.  Efficient dynamic simulation of an underwater vehicle with a robotic manipulator , 1995, IEEE Trans. Syst. Man Cybern..

[68]  Oussama Khatib,et al.  Inertial Properties in Robotic Manipulation: An Object-Level Framework , 1995, Int. J. Robotics Res..

[69]  Dinesh Manocha,et al.  OBBTree: a hierarchical structure for rapid interference detection , 1996, SIGGRAPH.

[70]  Friedrich Pfeiffer,et al.  Multibody Dynamics with Unilateral Contacts , 1996 .

[71]  David Baraff,et al.  Linear-time dynamics using Lagrange multipliers , 1996, SIGGRAPH.

[72]  Janusz,et al.  Geometrical Methods in Robotics , 1996, Monographs in Computer Science.

[73]  Subir Kumar Saha,et al.  A decomposition of the manipulator inertia matrix , 1997, IEEE Trans. Robotics Autom..

[74]  Dinesh K. Pai,et al.  Forward Dynamics, Elimination Methods, and Formulation Stiffness in Robot Simulation , 1997, Int. J. Robotics Res..

[75]  Scott McMillan,et al.  Forward dynamics of multilegged vehicles using the composite rigid body method , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[76]  Jean-Paul Laumond,et al.  Robot Motion Planning and Control , 1998 .

[77]  Brian Mirtich,et al.  V-Clip: fast and robust polyhedral collision detection , 1998, TOGS.

[78]  C. Barus A treatise on the theory of screws , 1998 .

[79]  Roy Featherstone,et al.  A Divide-and-Conquer Articulated-Body Algorithm for Parallel O(log(n)) Calculation of Rigid-Body Dynamics. Part 1: Basic Algorithm , 1999, Int. J. Robotics Res..

[80]  David E. Orin,et al.  A compliant contact model with nonlinear damping for simulation of robotic systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[81]  Katsu Yamane,et al.  Dynamics computation of structure-varying kinematic chains and its application to human figures , 2000, IEEE Trans. Robotics Autom..

[82]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[83]  Carme Torras,et al.  3D collision detection: a survey , 2001, Comput. Graph..

[84]  M. Coutinho Dynamic Simulations of Multibody Systems , 2001, Springer New York.

[85]  Vincent Hayward,et al.  Single state elastoplastic friction models , 2002, IEEE Trans. Autom. Control..

[86]  Inna Sharf,et al.  Literature survey of contact dynamics modelling , 2002 .

[87]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[88]  Wisama Khalil,et al.  Modeling, Identification and Control of Robots , 2003 .

[89]  Roy Featherstone,et al.  An Empirical Study of the Joint Space Inertia Matrix , 2004, Int. J. Robotics Res..

[90]  Katsu Yamane,et al.  Simulating and Generating Motions of Human Figures , 2004, Springer Tracts in Advanced Robotics.

[91]  Roy Featherstone,et al.  Efficient Factorization of the Joint-Space Inertia Matrix for Branched Kinematic Trees , 2005, Int. J. Robotics Res..

[92]  F. Amirouche Fundamentals Of Multibody Dynamics. Theory And Applications , 2005 .

[93]  Wei Hu,et al.  Hybrid kinematic and dynamic simulation of running machines , 2005, IEEE Transactions on Robotics.

[94]  Robert L. Norton Kinematics and Dynamics of Machinery , 2008 .

[95]  Richard W. Cottle,et al.  Linear Complementarity Problem , 2009, Encyclopedia of Optimization.

[96]  Veldpaus,et al.  Multibody dynamics , 2016 .