Adaptive differential dynamic programming for multiobjective optimal control

An efficient numerical solution scheme entitled adaptive differential dynamic programming is developed in this paper for multiobjective optimal control problems with a general separable structure. For a multiobjective control problem with a general separable structure, the ''optimal'' weighting coefficients for various performance indices are time-varying as the system evolves along any noninferior trajectory. Recognizing this prominent feature in multiobjective control, the proposed adaptive differential dynamic programming methodology combines a search process to identify an optimal time-varying weighting sequence with the solution concept in the conventional differential dynamic programming. Convergence of the proposed adaptive differential dynamic programming methodology is addressed.

[1]  D. Mayne A Second-order Gradient Method for Determining Optimal Trajectories of Non-linear Discrete-time Systems , 1966 .

[2]  Duan Li,et al.  Convexification of a noninferior frontier , 1996 .

[3]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[4]  Yacov Y. Haimes,et al.  The Envelope Approach for Multiobjective Optimization Problems , 1985 .

[5]  Pertti M. Mäkilä,et al.  Computer-aided design procedure for multiobjective LQG control problems , 1989 .

[6]  Duan Li On general multiple linear-quadratic control problems , 1993, IEEE Trans. Autom. Control..

[7]  Masao Fukushima,et al.  Decomposition of multiple criteria mathematical programming problems by dynamic programming , 1979 .

[8]  Duan Li On the minimax solution of multiple linear-quadratic problems , 1990 .

[9]  Lotfi A. Zadeh,et al.  Optimality and non-scalar-valued performance criteria , 1963 .

[10]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[11]  David Q. Mayne,et al.  Differential dynamic programming , 1972, The Mathematical Gazette.

[12]  P. Khargonekar,et al.  Multiple objective optimal control of linear systems: the quadratic norm case , 1991 .

[13]  Y. Haimes,et al.  New approach for nonseparable dynamic programming problems , 1990 .

[14]  Ying Li,et al.  Numerical Solution of Continuous-State Dynamic Programs Using Linear and Spline Interpolation , 1993, Oper. Res..

[15]  T. Morin,et al.  The imbedded state space approach to reducing dimensionality in dynamic programs of higher dimensions , 1974 .

[16]  T. A. Brown,et al.  Dynamic Programming in Multiplicative Lattices , 1965 .

[17]  M. P. Biswal,et al.  Exponential Transformation in Convexifying a Noninferior Frontier and Exponential Generating Method , 1998 .

[18]  S. Yakowitz,et al.  Computational aspects of discrete-time optimal control , 1984 .

[19]  D. Bertsekas,et al.  Adaptive aggregation methods for infinite horizon dynamic programming , 1989 .

[20]  Paulo A. V. Ferreira,et al.  Multiple-criterion control: a convex programming approach , 1995, Autom..

[21]  L. Liao,et al.  Convergence in unconstrained discrete-time differential dynamic programming , 1991 .

[22]  Les S. Jennings,et al.  Discrete-time optimal control problems with general constraints , 1992, TOMS.

[23]  R. Luus Iterative dynamic programming : From curiosity to a practical optimization procedure , 1998 .

[24]  Duan Li Iterative Parametric Dynamic Programming and Its Application in Reliability Optimization , 1995 .

[25]  Giuseppe De Nicolao,et al.  On the utopian approach to the multiobjective LQ problem , 1993 .

[26]  P. Yu Cone convexity, cone extreme points, and nondominated solutions in decision problems with multiobjectives , 1974 .

[27]  Yacov Y. Haimes,et al.  MULTIOBJECTIVE DYNAMIC PROGRAMMING: THE STATE OF THE ART , 1989 .

[28]  P. L'Ecuyer,et al.  Approximation and bounds in discrete event dynamic programming , 1983, The 23rd IEEE Conference on Decision and Control.

[29]  B. Gluss AN INTRODUCTION TO DYNAMIC PROGRAMMING , 1961 .

[30]  R. E. Larson,et al.  A dynamic programming successive approximations technique with convergence proofs , 1970 .

[31]  Y. Haimes,et al.  The envelope approach for multiobjeetive optimization problems , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[32]  Seiichi Iwamoto,et al.  DYNAMIC PROGRAMMING ON RECURSIVE REWARD SYSTEMS , 1976 .

[33]  Robert R. Inman,et al.  Multiobjective dynamic programing: A classic problem redressed , 1979 .

[34]  Duan Li Hierarchical control for large-scale systems with general multiple linear-quadratic structure , 1993, Autom..

[35]  John Casti,et al.  Vector-valued optimization problems in control theory , 1979 .