Emerging principles of population coding: in search for the neural code

Population coding theory aims to provide quantitative tests for hypotheses concerning the neural code. Over the last two decades theory has focused on analyzing the ways in which various parameters that characterize neuronal responses to external stimuli affect the information content of these responses. This article reviews and provides an intuitive explanation for the major effects of noise correlations and neuronal heterogeneity, and discusses their implications for our ability to investigate the neural code. It is argued that to test neural code hypotheses further, additional constraints are required, including relating trial-to-trial variation in neuronal population responses to behavioral decisions and specifying how information is decoded by downstream networks.

[1]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Jude F. Mitchell,et al.  Spatial Attention Modulates Center-Surround Interactions in Macaque Visual Area V4 , 2009, Neuron.

[3]  Emilio Salinas,et al.  Vector reconstruction from firing rates , 1994, Journal of Computational Neuroscience.

[4]  Haim Sompolinsky,et al.  Nonlinear Population Codes , 2004, Neural Computation.

[5]  Alan R Palmer,et al.  First Spike Latency Code for Interaural Phase Difference Discrimination in the Guinea Pig Inferior Colliculus , 2011, The Journal of Neuroscience.

[6]  Bruce G Cumming,et al.  Decision-related activity in sensory neurons: correlations among neurons and with behavior. , 2012, Annual review of neuroscience.

[7]  M. Bethge,et al.  Inferring decoding strategies from choice probabilities in the presence of correlated variability , 2013, Nature Neuroscience.

[8]  M. Paradiso,et al.  A theory for the use of visual orientation information which exploits the columnar structure of striate cortex , 2004, Biological Cybernetics.

[9]  R. Vogels,et al.  Population coding of stimulus orientation by striate cortical cells , 1990, Biological Cybernetics.

[10]  Terrence J. Sejnowski,et al.  The effect of neural adaptation on population coding accuracy , 2011, Journal of Computational Neuroscience.

[11]  I. Nelken,et al.  Functional organization and population dynamics in the mouse primary auditory cortex , 2010, Nature Neuroscience.

[12]  Alexander S. Ecker,et al.  Decorrelated Neuronal Firing in Cortical Microcircuits , 2010, Science.

[13]  G. Kreiman,et al.  Timing, Timing, Timing: Fast Decoding of Object Information from Intracranial Field Potentials in Human Visual Cortex , 2009, Neuron.

[14]  Colin W G Clifford,et al.  Adaptation Improves Neural Coding Efficiency Despite Increasing Correlations in Variability , 2013, The Journal of Neuroscience.

[15]  Peter Dayan,et al.  The Effect of Correlated Variability on the Accuracy of a Population Code , 1999, Neural Computation.

[16]  Wei Ji Ma,et al.  A Fast and Simple Population Code for Orientation in Primate V1 , 2012, The Journal of Neuroscience.

[17]  Arnulf B. A. Graf,et al.  Decoding the activity of neuronal populations in macaque primary visual cortex , 2011, Nature Neuroscience.

[18]  A. Pouget,et al.  Perceptual learning as improved probabilistic inference in early sensory areas , 2011, Nature Neuroscience.

[19]  Valentin Dragoi,et al.  Correlated Variability in Laminar Cortical Circuits , 2012, Neuron.

[20]  Stephen G. Lisberger,et al.  Sensory Population Decoding for Visually Guided Movements , 2013, Neuron.

[21]  Si Wu,et al.  Population Coding and Decoding in a Neural Field: A Computational Study , 2002, Neural Computation.

[22]  J. Maunsell,et al.  Using Neuronal Populations to Study the Mechanisms Underlying Spatial and Feature Attention , 2011, Neuron.

[23]  William Bialek,et al.  Reading a Neural Code , 1991, NIPS.

[24]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[25]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[26]  B. Cumming,et al.  Decision-related activity in sensory neurons reflects more than a neuron’s causal effect , 2009, Nature.

[27]  J. Maunsell,et al.  Attention improves performance primarily by reducing interneuronal correlations , 2009, Nature Neuroscience.

[28]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[29]  A. Kohn,et al.  Gamma and the Coordination of Spiking Activity in Early Visual Cortex , 2013, Neuron.

[30]  Timothy Q. Gentner,et al.  Associative Learning Enhances Population Coding by Inverting Interneuronal Correlation Patterns , 2013, Neuron.

[31]  Daeyeol Lee,et al.  Effects of noise correlations on information encoding and decoding. , 2006, Journal of neurophysiology.

[32]  Valentin Dragoi,et al.  Adaptive coding of visual information in neural populations , 2008, Nature.

[33]  A. Pouget,et al.  Probabilistic brains: knowns and unknowns , 2013, Nature Neuroscience.

[34]  Oren Shriki,et al.  Fast Coding of Orientation in Primary Visual Cortex , 2012, PLoS Comput. Biol..

[35]  Adam Kohn,et al.  Laminar dependence of neuronal correlations in visual cortex. , 2013, Journal of neurophysiology.

[36]  Stefano Panzeri,et al.  Information Carried by Population Spike Times in the Whisker Sensory Cortex can be Decoded Without Knowledge of Stimulus Time , 2010, Front. Syn. Neurosci..

[37]  Nicolas Brunel,et al.  Mutual Information, Fisher Information, and Population Coding , 1998, Neural Computation.

[38]  Alexander S. Ecker,et al.  Reassessing optimal neural population codes with neurometric functions , 2011, Proceedings of the National Academy of Sciences.

[39]  Tim Gollisch,et al.  Rapid Neural Coding in the Retina with Relative Spike Latencies , 2008, Science.

[40]  Maoz Shamir,et al.  The Scaling of Winner-Takes-All Accuracy with Population Size , 2006, Neural Computation.

[41]  Alexandre Pouget,et al.  Insights from a Simple Expression for Linear Fisher Information in a Recurrently Connected Population of Spiking Neurons , 2011, Neural Computation.

[42]  Haim Sompolinsky,et al.  Implications of Neuronal Diversity on Population Coding , 2006, Neural Computation.

[43]  Yong Gu,et al.  Choice-related activity and correlated noise in subcortical vestibular neurons , 2012, Nature Neuroscience.

[44]  Earl K Miller,et al.  Cortical circuits for the control of attention , 2012, Current Opinion in Neurobiology.

[45]  Maoz Shamir,et al.  The Temporal Winner-Take-All Readout , 2009, PLoS Comput. Biol..

[46]  Eric Shea-Brown,et al.  Stimulus-Dependent Correlations and Population Codes , 2008, Neural Computation.

[47]  Rufin van Rullen,et al.  Rate Coding Versus Temporal Order Coding: What the Retinal Ganglion Cells Tell the Visual Cortex , 2001, Neural Computation.

[48]  Christian W. Eurich,et al.  Representational Accuracy of Stochastic Neural Populations , 2002, Neural Computation.

[49]  Alexander S. Ecker,et al.  The effect of noise correlations in populations of diversely tuned neurons , 2011 .

[50]  H. Sompolinsky,et al.  Mutual information of population codes and distance measures in probability space. , 2001, Physical review letters.

[51]  Mark C. W. van Rossum,et al.  Transmission of Population-Coded Information , 2012, Neural Computation.

[52]  P. Dayan,et al.  Space and time in visual context , 2007, Nature Reviews Neuroscience.

[53]  M. A. Smith,et al.  Spatial and Temporal Scales of Neuronal Correlation in Primary Visual Cortex , 2008, The Journal of Neuroscience.

[54]  R. Johansson,et al.  First spikes in ensembles of human tactile afferents code complex spatial fingertip events , 2004, Nature Neuroscience.

[55]  Daniel E. Winkowski,et al.  Laminar Transformation of Frequency Organization in Auditory Cortex , 2013, The Journal of Neuroscience.

[56]  A P Georgopoulos,et al.  On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[57]  S. Thorpe,et al.  Speed of processing in the human visual system , 1996, Nature.

[58]  Jan J. Koenderink,et al.  Information in channel-coded systems: correlated receivers , 1992, Biological Cybernetics.

[59]  E. Salinas,et al.  Perceptual decision making in less than 30 milliseconds , 2010, Nature Neuroscience.

[60]  A Treves,et al.  Representational capacity of a set of independent neurons. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[61]  Jude F. Mitchell,et al.  Spatial Attention Decorrelates Intrinsic Activity Fluctuations in Macaque Area V4 , 2009, Neuron.

[62]  A. Reyes,et al.  Spatial Profile of Excitatory and Inhibitory Synaptic Connectivity in Mouse Primary Auditory Cortex , 2012, The Journal of Neuroscience.

[63]  Jean Régis,et al.  Ultra-Rapid Sensory Responses in the Human Frontal Eye Field Region , 2009, The Journal of Neuroscience.

[64]  Zengcai V. Guo,et al.  Neural coding during active somatosensation revealed using illusory touch , 2013, Nature Neuroscience.

[65]  H. Sompolinsky,et al.  Population coding in neuronal systems with correlated noise. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[66]  Yong Gu,et al.  Perceptual Learning Reduces Interneuronal Correlations in Macaque Visual Cortex , 2011, Neuron.

[67]  M. Cohen,et al.  Measuring and interpreting neuronal correlations , 2011, Nature Neuroscience.

[68]  Marc A Sommer,et al.  Spatial and Temporal Scales of Neuronal Correlation in Visual Area V4 , 2013, The Journal of Neuroscience.

[69]  Eric D Young,et al.  First-spike latency information in single neurons increases when referenced to population onset , 2007, Proceedings of the National Academy of Sciences.

[70]  Alexandre Pouget,et al.  Probabilistic vs. non-probabilistic approaches to the neurobiology of perceptual decision-making , 2012, Current Opinion in Neurobiology.

[71]  Si Wu,et al.  Information processing in a neuron ensemble with the multiplicative correlation structure , 2004, Neural Networks.

[72]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[73]  S. Thorpe,et al.  Spike times make sense , 2005, Trends in Neurosciences.

[74]  Nicole C. Rust,et al.  Signals in inferotemporal and perirhinal cortex suggest an “untangling” of visual target information , 2013, Nature Neuroscience.