The width of five‐dimensional prismatoids
暂无分享,去创建一个
[1] V. Klee,et al. Thed-step conjecture for polyhedra of dimensiond<6 , 1967 .
[2] D. Larman. Paths on Polytopes , 1970 .
[3] David W. Barnette. An upper bound for the diameter of a polytope , 1974, Discret. Math..
[4] Victor Klee,et al. The d-Step Conjecture and Its Relatives , 1987, Math. Oper. Res..
[5] G. Kalai,et al. A quasi-polynomial bound for the diameter of graphs of polyhedra , 1992, math/9204233.
[6] S. Smale. Mathematical problems for the next century , 1998 .
[7] Francisco Santos,et al. A counterexample to the Hirsch conjecture , 2010, ArXiv.
[8] Edward D. Kim,et al. An Update on the Hirsch Conjecture , 2009, 0907.1186.
[9] J. D. Loera,et al. Triangulations: Structures for Algorithms and Applications , 2010 .
[10] Tamon Stephen,et al. Embedding a Pair of Graphs in a Surface, and the Width of 4-dimensional Prismatoids , 2012, Discret. Comput. Geom..