Lectures on 0/1-Polytopes
暂无分享,去创建一个
[1] R. Richardson. The International Congress of Mathematicians , 1932, Science.
[2] J. Williamson,et al. Determinants whose Elements are 0 and 1 , 1946 .
[3] Michel Balinski,et al. On the graph structure of convex polyhedra in n-space , 1961 .
[4] Determinants with Elements ± 1 , 1967 .
[5] On a class of (0,1) matrices with vanishing determinants , 1967 .
[6] Saburo Muroga,et al. Threshold logic and its applications , 1971 .
[7] Vasek Chvátal,et al. Edmonds polytopes and a hierarchy of combinatorial problems , 1973, Discret. Math..
[8] A. Mukhopadhyay,et al. On the probability that the determinant of an n x n matrix over a finite field vanishes , 1984, Discret. Math..
[9] Eugene L. Lawler,et al. Traveling Salesman Problem , 2016 .
[10] György Elekes,et al. A geometric inequality and the complexity of computing volume , 1986, Discret. Comput. Geom..
[11] Ali Ridha Mahjoub,et al. On the cut polytope , 1986, Math. Program..
[12] Z. Fiiredi. Random Polytopes in the d-Dimensional Cube , 1986 .
[13] Zoltán Füredi. Random polytopes in thed-dimensional cube , 1986, Discret. Comput. Geom..
[14] Andrew M. Odlyzko,et al. On subspaces spanned by random selections of plus/minus 1 vectors , 1988, Journal of combinatorial theory. Series A.
[15] Denis Naddef,et al. The hirsch conjecture is true for (0, 1)-polytopes , 1989, Math. Program..
[16] J. G. Pierce,et al. Geometric Algorithms and Combinatorial Optimization , 2016 .
[17] J. H. E. Cohn. On Determinants with Elements ±1, II , 1989 .
[18] H. P. Williams. THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .
[19] Warren D. Smith. Studies in computational geometry motivated by mesh generation , 1989 .
[20] N. Biggs. GEOMETRIC ALGORITHMS AND COMBINATORIAL OPTIMIZATION: (Algorithms and Combinatorics 2) , 1990 .
[21] P. Erdos,et al. Collected Papers of Paul Turan , 1990 .
[22] R. Blind,et al. Convex polytopes without triangular faces , 1990 .
[23] Caterina De Simone,et al. The cut polytope and the Boolean quadric polytope , 1990, Discret. Math..
[24] Mark Haiman,et al. A simple and relatively efficient triangulation of then-cube , 1991, Discret. Comput. Geom..
[25] Tomás Feder,et al. Balanced matroids , 1992, STOC '92.
[26] Milena Mihail. On the Expansion of Combinatorial Polytopes , 1992, MFCS.
[27] Michel Deza,et al. The cut cone III: On the role of triangle facets , 1992, Graphs Comb..
[28] Hyperebenen in Hyperkuben - Eine Klassifizierung und Quantifizierung , 1992 .
[29] Michael R. Anderson,et al. A triangulation of the 6-cube with 308 simplices , 1993, Discret. Math..
[30] Robert B. Hughes. Minimum-cardinality triangulations of the d-cube for d=5 and d=6 , 1993, Discret. Math..
[31] Robert B. Hughes,et al. Lower bounds on cube simplexity , 1994, Discret. Math..
[32] G. Ziegler. Lectures on Polytopes , 1994 .
[33] Johan Håstad,et al. On the Size of Weights for Threshold Gates , 1994, SIAM J. Discret. Math..
[34] Rekha R. Thomas,et al. Gröbner bases and triangulations of the second hypersimplex , 1995, Comb..
[35] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[36] Franz Aurenhammer,et al. Classifying Hyperplanes in Hypercubes , 1996, SIAM J. Discret. Math..
[37] Michael R. Anderson,et al. Simplexity of the cube , 1996, Discret. Math..
[38] Victor Klee,et al. Largest j-simplices in d-cubes: Some relatives of the hadamard maximum determinant problem , 1996 .
[39] Louis J. Billera,et al. All 0–1 polytopes are traveling salesman polytopes , 1996, Comb..
[40] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[41] Günter M. Ziegler,et al. Extremal Properties of 0/1-Polytopes , 1997, Discret. Comput. Geom..
[42] Noga Alon,et al. Anti-Hadamard Matrices, Coin Weighing, Threshold Gates, and Indecomposable Hypergraphs , 1997, J. Comb. Theory, Ser. A.
[43] Michael G. Neubauer,et al. The maximum determinant of ± 1 matrices , 1997 .
[44] V. Klee,et al. A proof of the strict monotone 4-step conjecture , 1998 .
[45] R. Bixby,et al. On the Solution of Traveling Salesman Problems , 1998 .
[46] Alexander Schrijver,et al. Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.
[47] Friedrich Eisenbrand,et al. Bounds on the Chvátal Rank of Polytopes in the 0/1-Cube , 1999, IPCO.
[48] David P. Robbins,et al. On the Volume of the Polytope of Doubly Stochastic Matrices , 1999, Exp. Math..
[49] Friedrich Eisenbrand,et al. On the Chvátal Rank of Polytopes in the 0/1 Cube , 1999, Discret. Appl. Math..
[50] Michael Joswig,et al. polymake: a Framework for Analyzing Convex Polytopes , 2000 .
[51] Oswin Aichholzer,et al. Extremal Properties of 0/1-Polytopes of Dimension 5 , 2000 .
[52] Volker Kaibel,et al. Simple 0/1-Polytopes , 2000, Eur. J. Comb..
[53] Jesús A. De Loera,et al. Minimal Simplicial Dissections and Triangulations of Convex 3-Polytopes , 2000, Discret. Comput. Geom..
[54] Günter Rote,et al. Upper Bounds on the Maximal Number of Facets of 0/1-Polytopes , 2000, Eur. J. Comb..
[55] Warren D. Smith. A Lower Bound for the Simplexity of then-Cube via Hyperbolic Volumes , 2000, Eur. J. Comb..