Modeling and Interpolation of the Ambient Magnetic Field by Gaussian Processes

Anomalies in the ambient magnetic field can be used as features in indoor positioning and navigation. By using Maxwell's equations, we derive and present a Bayesian nonparametric probabilistic modeling approach for interpolation and extrapolation of the magnetic field. We model the magnetic field components jointly by imposing a Gaussian process (GP) prior to the latent scalar potential of the magnetic field. By rewriting the GP model in terms of a Hilbert space representation, we circumvent the computational pitfalls associated with GP modeling and provide a computationally efficient and physically justified modeling tool for the ambient magnetic field. The model allows for sequential updating of the estimate and time-dependent changes in the magnetic field. The model is shown to work well in practice in different applications. We demonstrate mapping of the magnetic field both with an inexpensive Raspberry Pi powered robot and on foot using a standard smartphone.

[1]  E. Fuselier Refined error estimates for matrix-valued radial basis functions , 2007 .

[2]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[3]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[4]  Arno Solin,et al.  Terrain navigation in the magnetic landscape: Particle filtering for indoor positioning , 2016, 2016 European Navigation Conference (ENC).

[5]  V. Springel Smoothed Particle Hydrodynamics in Astrophysics , 2010, 1109.2219.

[6]  J. Jackson Classical Electrodynamics, 3rd Edition , 1998 .

[7]  J. Vanderlinde,et al.  Classical Electromagnetic Theory , 2005 .

[8]  Carl E. Rasmussen,et al.  Gaussian Processes for Data-Efficient Learning in Robotics and Control , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  M. Nabighian,et al.  The historical development of the magnetic method in exploration , 2005 .

[10]  Juha Röning,et al.  Magnetic field-based SLAM method for solving the localization problem in mobile robot floor-cleaning task , 2011, 2011 15th International Conference on Advanced Robotics (ICAR).

[11]  Thomas B. Schön,et al.  Modeling magnetic fields using Gaussian processes , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[12]  Hyun Myung,et al.  Magnetic field constraints and sequence-based matching for indoor pose graph SLAM , 2015, Robotics Auton. Syst..

[13]  K. Kabin,et al.  Divergence‐free magnetic field interpolation and charged particle trajectory integration , 2006 .

[14]  Simo Särkkä,et al.  Bayesian Filtering and Smoothing , 2013, Institute of Mathematical Statistics textbooks.

[15]  Stefan B. Williams,et al.  Bathymetric particle filter SLAM using trajectory maps , 2012, Int. J. Robotics Res..

[16]  Jeroen D. Hol,et al.  Sensor Fusion and Calibration of Inertial Sensors, Vision, Ultra-Wideband and GPS , 2011 .

[17]  Maik Moeller,et al.  Introduction to Electrodynamics , 2017 .

[18]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[19]  Jouni Hartikainen,et al.  Kalman filtering and smoothing solutions to temporal Gaussian process regression models , 2010, 2010 IEEE International Workshop on Machine Learning for Signal Processing.

[20]  Simo Särkkä,et al.  Sequential Inference for Latent Force Models , 2011, UAI.

[21]  Fabio Tozeto Ramos,et al.  Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments , 2016, NIPS.

[22]  Arno Solin,et al.  Spatio-Temporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing , 2013 .

[23]  Marco F. Huber Recursive Gaussian process: On-line regression and learning , 2014, Pattern Recognit. Lett..

[24]  Mohammed Khider,et al.  Simultaneous Localization and Mapping for pedestrians using distortions of the local magnetic field intensity in large indoor environments , 2013, International Conference on Indoor Positioning and Indoor Navigation.

[25]  Simo Särkkä,et al.  Infinite-Dimensional Kalman Filtering Approach to Spatio-Temporal Gaussian Process Regression , 2012, AISTATS.

[26]  Simo Särkkä,et al.  State-Space Inference for Non-Linear Latent Force Models with Application to Satellite Orbit Prediction , 2012, ICML.

[27]  Hugh F. Durrant-Whyte,et al.  Simultaneous map building and localization for an autonomous mobile robot , 1991, Proceedings IROS '91:IEEE/RSJ International Workshop on Intelligent Robots and Systems '91.

[28]  Neil D. Lawrence,et al.  Linear Latent Force Models Using Gaussian Processes , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Alberto Viseras Ruiz,et al.  A general algorithm for exploration with Gaussian processes in complex, unknown environments , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[30]  W. Nowak,et al.  Application of FFT-based Algorithms for Large-Scale Universal Kriging Problems , 2009 .

[31]  HaverinenJanne,et al.  Global indoor self-localization based on the ambient magnetic field , 2009 .

[32]  Simo Särkkä,et al.  Linear Operators and Stochastic Partial Differential Equations in Gaussian Process Regression , 2011, ICANN.

[33]  Carl E. Rasmussen,et al.  A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..

[34]  Paul Timothy Furgale,et al.  Gaussian Process Gauss–Newton for non-parametric simultaneous localization and mapping , 2013, Int. J. Robotics Res..

[35]  Sebastian Thrun,et al.  3-Axis magnetic field mapping and fusion for indoor localization , 2012, 2012 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[36]  Simo Särkkä,et al.  Batch Continuous-Time Trajectory Estimation as Exactly Sparse Gaussian Process Regression , 2014, Robotics: Science and Systems.

[37]  Niklas Wahlstrom,et al.  Modeling of Magnetic Fields and Extended Objects for Localization Applications , 2015 .

[38]  Carsten Carstensen,et al.  On a general ?-algorithm , 1990 .

[39]  Lorenzo Rosasco,et al.  Vector Field Learning via Spectral Filtering , 2010, ECML/PKDD.

[40]  Simo Särkkä,et al.  Batch nonlinear continuous-time trajectory estimation as exactly sparse Gaussian process regression , 2014, Autonomous Robots.

[41]  Dieter Fox,et al.  Gaussian Processes for Signal Strength-Based Location Estimation , 2006, Robotics: Science and Systems.

[42]  Arno Solin,et al.  Spatiotemporal Learning via Infinite-Dimensional Bayesian Filtering and Smoothing: A Look at Gaussian Process Regression Through Kalman Filtering , 2013, IEEE Signal Processing Magazine.

[43]  Teresa A. Vidal-Calleja,et al.  Learning spatial correlations for Bayesian fusion in pipe thickness mapping , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Christian Laugier,et al.  The International Journal of Robotics Research (IJRR) - Special issue on ``Field and Service Robotics '' , 2009 .

[45]  Paul Newman,et al.  Adaptive compression for 3D laser data , 2011, Int. J. Robotics Res..

[46]  J. Chilès,et al.  Geological modelling from field data and geological knowledge. Part I. Modelling method coupling 3D potential-field interpolation and geological rules , 2008 .

[47]  Juha Röning,et al.  Simultaneous localization and mapping using ambient magnetic field , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.

[48]  Fabio Tozeto Ramos,et al.  Hilbert maps: Scalable continuous occupancy mapping with stochastic gradient descent , 2015, Robotics: Science and Systems.

[49]  Christopher J Paciorek,et al.  Bayesian Smoothing with Gaussian Processes Using Fourier Basis Functions in the spectralGP Package. , 2007, Journal of statistical software.

[50]  Fabio Tozeto Ramos,et al.  Gaussian process occupancy maps* , 2012, Int. J. Robotics Res..

[51]  Juha Röning,et al.  Near-optimal Exploration in Gaussian Process SLAM: Scalable Optimality Factor and Model Quality Rating , 2011, ECMR.

[52]  Michael A. Osborne Bayesian Gaussian processes for sequential prediction, optimisation and quadrature , 2010 .

[53]  Neil D. Lawrence,et al.  Latent Force Models , 2009, AISTATS.

[54]  P. Ledru,et al.  Geological modelling from field data and geological knowledge. Part II. Modelling validation using gravity and magnetic data inversion , 2008 .

[55]  A. O'Hagan,et al.  Curve Fitting and Optimal Design for Prediction , 1978 .

[56]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[57]  R. Curtain Infinite-Dimensional Linear Systems Theory , 1978 .

[58]  Robert Harle,et al.  Pedestrian localisation for indoor environments , 2008, UbiComp.

[59]  J. L. Gould,et al.  Biogenic magnetite as a basis for magnetic field detection in animals. , 1981, Bio Systems.

[60]  Patrick Robertson,et al.  Characterization of the indoor magnetic field for applications in Localization and Mapping , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[61]  Arno Solin,et al.  Variational Fourier Features for Gaussian Processes , 2016, J. Mach. Learn. Res..

[62]  P. Newman,et al.  Adaptive compression for 3 D laser data , 2011 .

[63]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[64]  Steven Reece,et al.  An introduction to Gaussian processes for the Kalman filter expert , 2010, 2010 13th International Conference on Information Fusion.

[65]  Carl E. Rasmussen,et al.  Sparse Spectrum Gaussian Process Regression , 2010, J. Mach. Learn. Res..

[66]  Simo Srkk,et al.  Bayesian Filtering and Smoothing , 2013 .

[67]  Andrew G. Dempster,et al.  How feasible is the use of magnetic field alone for indoor positioning? , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[68]  B. Bhattacharyya,et al.  Bicubic Spline Interpolation as a Method for Treatment of Potential Field Data , 1969 .

[69]  Janne Haverinen,et al.  Global indoor self-localization based on the ambient magnetic field , 2009, Robotics Auton. Syst..

[70]  Arno Solin,et al.  Hilbert space methods for reduced-rank Gaussian process regression , 2014, Stat. Comput..

[71]  Patrick Robertson,et al.  Magnetic maps of indoor environments for precise localization of legged and non-legged locomotion , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[72]  Neil D. Lawrence,et al.  Kernels for Vector-Valued Functions: a Review , 2011, Found. Trends Mach. Learn..

[73]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[74]  Jonghyuk Kim,et al.  Hierarchical Gaussian Processes for Robust and Accurate Map Building , 2015, ICRA 2015.

[75]  Thomas B. Schön,et al.  Linearly constrained Gaussian processes , 2017, NIPS.