Chaotic behavior of discrete-time linear inclusion dynamical systems

Abstract Given any finite family of real d-by-d nonsingular matrices { S 1 , … , S l } , by extending the well-known Li–Yorke chaos of a deterministic nonlinear dynamical system to a discrete-time linear inclusion or hybrid or switched system: x n ∈ { S k x n − 1 ; 1 ≤ k ≤ l } , x 0 ∈ R d and n ≥ 1 , we study the chaotic dynamics of the state trajectory (xn(x0, σ))n ≥ 1 with initial state x 0 ∈ R d , governed by a switching law σ : N → { 1 , … , l } . Two sufficient conditions are given so that for a “large” set of switching laws σ, there exhibits the scrambled dynamics as follows: for all x 0 , y 0 ∈ R d , x 0 ≠ y 0 , lim inf n → + ∞ ∥ x n ( x 0 , σ ) − x n ( y 0 , σ ) ∥ = 0 and lim sup n → + ∞ ∥ x n ( x 0 , σ ) − x n ( y 0 , σ ) ∥ = ∞ . This implies that there coexist positive, zero and negative Lyapunov exponents and that the trajectories (xn(x0, σ))n ≥ 1 are extremely sensitive to the initial states x 0 ∈ R d . We also show that a periodically stable linear inclusion system, which may be product unbounded, does not exhibit any such chaotic behavior. An explicit simple example shows the discontinuity of Lyapunov exponents with respect to the switching laws.

[1]  P. Ramadge,et al.  Periodicity and chaos from switched flow systems: contrasting examples of discretely controlled continuous systems , 1993, IEEE Trans. Autom. Control..

[2]  Luis Barreira,et al.  Sets of “Non-typical” points have full topological entropy and full Hausdorff dimension , 2000 .

[3]  Antonios Manoussos,et al.  Dynamics of tuples of matrices , 2008 .

[4]  Viet-Thanh Pham,et al.  A Chaotic System with Different Shapes of Equilibria , 2016, Int. J. Bifurc. Chaos.

[5]  John Baillieul,et al.  Chaotic motion in nonlinear feedback systems , 1980 .

[6]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[7]  Xiongping Dai,et al.  A Gel'fand-type spectral radius formula and stability of linear constrained switching systems , 2011, ArXiv.

[8]  L. Elsner The generalized spectral-radius theorem: An analytic-geometric proof , 1995 .

[9]  Xinzhi Liu,et al.  Switching control of linear systems for generating chaos , 2006 .

[10]  Xiongping Dai,et al.  Robust periodic stability implies uniform exponential stability of Markovian jump linear systems and random linear ordinary differential equations , 2013, J. Frankl. Inst..

[11]  Mau-Hsiang Shih,et al.  Asymptotic Stability and Generalized Gelfand Spectral Radius Formula , 1997 .

[12]  V. Kozyakin Structure of extremal trajectories of discrete linear systems and the finiteness conjecture , 2007 .

[13]  Javier Aracil,et al.  Chaotic motion in an adaptive control system , 1985 .

[14]  F. Wirth The generalized spectral radius and extremal norms , 2002 .

[15]  N. Feldman,et al.  Hypercyclic tuples of operators and somewhere dense orbits , 2008 .

[16]  Guanrong Chen,et al.  Generating chaos with a switching piecewise-linear controller. , 2002, Chaos.

[17]  J. Tsitsiklis,et al.  The boundedness of all products of a pair of matrices is undecidable , 2000 .

[18]  Xiongping Dai,et al.  Extremal and Barabanov semi-norms of a semigroup generated by a bounded family of matrices , 2011 .

[19]  Yu Huang,et al.  Periodically switched stability induces exponential stability of discrete-time linear switched systems in the sense of Markovian probabilities , 2011, Autom..

[20]  Xiongping Dai Weakly Birkhoff recurrent switching signals, almost sure and partial stability of linear switched dynamical systems , 2011 .

[21]  Angelo Vulpiani,et al.  Chaotic Dynamical Systems , 1993 .

[22]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[23]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[24]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[25]  François Blanchard,et al.  On Li-Yorke pairs , 2002, Journal für die reine und angewandte Mathematik (Crelles Journal).

[26]  Guanrong Chen,et al.  Stability and chaos in a class of 2-dimensional spatiotemporal discrete systems , 2009 .

[27]  Yung-Yih Lur A note on a gap result for norms of semigroups of matrices , 2006 .

[28]  Chuanjun Tian Chaos of Discrete Spatiotemporal Systems on a Bidirectional Metric Space , 2014, Int. J. Bifurc. Chaos.

[29]  P. Walters Introduction to Ergodic Theory , 1977 .

[30]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[31]  Yu Huang,et al.  Pointwise Stability of Discrete-Time Stationary Matrix-Valued Markovian Processes , 2015, IEEE Transactions on Automatic Control.

[32]  J. Bell A gap result for the norms of semigroups of matrices , 2005 .

[33]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[34]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[35]  Xiongping Dai Some criteria for spectral finiteness of a finite subset of the real matrix space Rd×d , 2013 .

[36]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[37]  Victor Kozyakin,et al.  The Berger-Wang formula for the Markovian joint spectral radius , 2014, 1401.2711.

[38]  Xiongping Dai,et al.  Hyperbolicity and integral expression of the Lyapunov exponents for linear cocycles , 2007 .

[39]  Toshimitsu Ushio,et al.  Chaotic rounding error in digital control systems , 1987 .

[40]  Xinlong Zhou,et al.  Characterization of joint spectral radius via trace , 2000 .

[41]  Daniel Liberzon,et al.  Switching in Systems and Control , 2003, Systems & Control: Foundations & Applications.

[42]  Robert Shorten,et al.  Stability Criteria for Switched and Hybrid Systems , 2007, SIAM Rev..

[43]  S. Ge,et al.  Stability Theory of Switched Dynamical Systems , 2011 .

[44]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[45]  I. Daubechies,et al.  Sets of Matrices All Infinite Products of Which Converge , 1992 .

[46]  Grebogi,et al.  Controlling chaos in high dimensional systems. , 1992, Physical review letters.

[47]  Philippe Jouan,et al.  Geometry of the Limit Sets of Linear Switched Systems , 2010, SIAM J. Control. Optim..

[48]  Nikita Sidorov,et al.  An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.

[49]  G. Costakis,et al.  On the minimal number of matrices which form a locally hypercyclic, non-hypercyclic tuple , 2009 .

[50]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[51]  Yi Zhou,et al.  Criterion of Chaos for Switched Linear Systems with Controllers , 2010, Int. J. Bifurc. Chaos.

[52]  Toshimitsu Ushio,et al.  Chaotic behavior in piecewise-linear sampled-data control systems , 1985 .

[53]  Jairo Bochi,et al.  INEQUALITIES FOR NUMERICAL INVARIANTS OF SETS OF MATRICES , 2003 .

[54]  G. Rota,et al.  A note on the joint spectral radius , 1960 .