Feedback stabilization over signal-to-noise ratio constrained channels

There has recently been significant interest in feedback stabilization problems over communication channels, including several with bit rate limited feedback. Motivated by considering one source of such bit rate limits, we study the problem of stabilization over a signal-to-noise ratio (SNR) constrained channel. We discuss both continuous and discrete time cases, and show that for either state feedback, or for output feedback delay-free, minimum phase plants, there are limitations on the ability to stabilize an unstable plant over an SNR constrained channel. These limitations in fact match precisely those that might have been inferred by considering the associated ideal Shannon capacity bit rate over the same channel.

[1]  J. Freudenberg,et al.  Right half plane poles and zeros and design tradeoffs in feedback systems , 1985 .

[2]  Sekhar Tatikonda,et al.  Control under communication constraints , 2004, IEEE Transactions on Automatic Control.

[3]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[4]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[5]  Robin J. Evans,et al.  Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..

[6]  Andrey V. Savkin,et al.  An analogue of Shannon information theory for networked control systems. Stabilization via a noisy discrete channel , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[7]  David Q. Mayne,et al.  Limiting performance of optimal linear filters , 1999, Autom..

[8]  George A. Perdikaris Computer Controlled Systems , 1991 .

[9]  R. Evans,et al.  Stabilization with data-rate-limited feedback: tightest attainable bounds , 2000 .

[10]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[11]  Nicola Elia,et al.  When bode meets shannon: control-oriented feedback communication schemes , 2004, IEEE Transactions on Automatic Control.

[12]  B. Francis,et al.  A Course in H Control Theory , 1987 .

[13]  Rick H. Middleton,et al.  Trade-offs in linear control system design , 1991, Autom..

[14]  Graham C. Goodwin,et al.  Digital control and estimation : a unified approach , 1990 .

[15]  Li Qiu,et al.  Limitations on maximal tracking accuracy , 2000, IEEE Trans. Autom. Control..

[16]  D. Delchamps Stabilizing a linear system with quantized state feedback , 1990 .

[17]  P. Kabamba Control of Linear Systems Using Generalized Sampled-Data Hold Functions , 1987, 1987 American Control Conference.

[18]  L. Qiu,et al.  Tracking performance limitations in LTI multivariable discrete-time systems , 2002 .

[19]  Richard H. Middleton,et al.  EFFECTS OF TIME DELAY ON FEEDBACK STABILISATION OVER SIGNAL-TO-NOISE RATIO CONSTRAINED CHANNELS , 2005 .

[20]  R. Middleton,et al.  Inherent design limitations for linear sampled-data feedback systems , 1995 .

[21]  Daniel Liberzon,et al.  Quantized feedback stabilization of linear systems , 2000, IEEE Trans. Autom. Control..

[22]  Huibert Kwakernaak,et al.  Linear Optimal Control Systems , 1972 .

[23]  M. Vidyasagar Control System Synthesis : A Factorization Approach , 1988 .

[24]  Erik I. Verriest Delay in state feedback control over a network , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[25]  A.S. Matveev,et al.  An analogue of Shannon information theory for networked control systems: State estimation via a noisy discrete channel , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  Masoud Salehi,et al.  Communication Systems Engineering , 1994 .

[27]  G. David Forney,et al.  Modulation and Coding for Linear Gaussian Channels , 1998, IEEE Trans. Inf. Theory.

[28]  Gene F. Franklin,et al.  Digital control of dynamic systems , 1980 .

[29]  Richard H. Middleton,et al.  Robustness of zero shifting via generalized sampled-data hold functions , 1997, IEEE Trans. Autom. Control..

[30]  B. Anderson,et al.  Linear Optimal Control , 1971 .

[31]  James S. Freudenberg,et al.  Non-pathological sampling for generalized sampled-data hold functions , 1995, Autom..

[32]  T. Broadbent Complex Variables , 1970, Nature.

[33]  Robin J. Evans,et al.  Topological feedback entropy and Nonlinear stabilization , 2004, IEEE Transactions on Automatic Control.

[34]  J. Baillieul Feedback coding for information-based control: operating near the data-rate limit , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[35]  T. Başar,et al.  Coding and Control over Discrete Noisy Forward and Feedback Channels , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[36]  Robert M. Gray,et al.  Quantization noise spectra , 1990, IEEE Trans. Inf. Theory.

[37]  Bruce A. Francis,et al.  Quadratic stabilization of sampled-data systems with quantization , 2003, Autom..

[38]  Nicola Elia,et al.  Stabilization of linear systems with limited information , 2001, IEEE Trans. Autom. Control..

[39]  R. Evans,et al.  Mean square stabilisability of stochastic linear systems with data rate constraints , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[40]  Graham C. Goodwin,et al.  Fundamental Limitations in Filtering and Control , 1997 .

[41]  S. Dasgupta Control over bandlimited communication channels: limitations to stabilizability , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[42]  J. Freudenberg,et al.  Limitations of feedback properties imposed by open-loop right half plane poles , 1991 .

[43]  Siep Weiland,et al.  H2 Optimal Control , 2000 .

[44]  J. Freudenberg,et al.  Stabilization of non-minimum phase plants over signal-to-noise ratio constrained channels , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[45]  Anant Sahai,et al.  The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.

[46]  Astrom Computer Controlled Systems , 1990 .

[47]  S. Mitter,et al.  Control of LQG systems under communication constraints , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[48]  Karl Johan Åström,et al.  Computer-controlled systems (3rd ed.) , 1997 .

[49]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[50]  R. Gallager Information Theory and Reliable Communication , 1968 .