Multiobjective optimal structural control of the Notre Dame building model benchmark

Reduced-order, multiobjective optimal controllers are developed for the Notre Dame structural control building model benchmark. Standard H 2 /LQG optimal control excels at noise and disturbance rejection, but may have difficulty with actuator saturation and plant uncertainty. The benchmark problem is adapted to a multiobjective optimal control framework, using l 1 and H∞ constraints to improve controller performance, especially attempting to reduce peak responses, avoid saturation, and improve robustness to unmodelled dynamics. The tradeoffs between H 2 performance, output peak magnitudes, and robust stability are examined. Several optimal controllers and their performance on the benchmark are given.

[1]  Mustafa Khammash,et al.  Synthesis of globally optimal controllers for robust performance to unstructured uncertainty , 1996, IEEE Trans. Autom. Control..

[2]  T. T. Soong,et al.  Experiments on Active Control of Seismic Structures , 1988 .

[3]  David Walker,et al.  MIXED H 2 /μ OPTIMIZATION , 1994 .

[4]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .

[5]  D.B. Ridgely,et al.  A MATLAB toolbox for fixed order, mixed-norm control synthesis , 1995, Proceedings of International Conference on Control Applications.

[6]  Isaac Kaminer,et al.  Mixed H2/H∞ control for discrete-time systems via convex optimization , 1992, American Control Conference.

[7]  W. Haddad,et al.  LQG control with an H∞ performance bound: a riccati equation approach , 1988, 1988 American Control Conference.

[8]  T. T. Soong,et al.  Experimental Study of Active Control for MDOF Seismic Structures , 1989 .

[9]  Shirley J. Dyke,et al.  Benchmark problems in structural control: part I—Active Mass Driver system , 1998 .

[10]  P. Khargonekar,et al.  Mixed H/sub 2//H/sub infinity / control: a convex optimization approach , 1991 .

[11]  D. Brett Ridgely,et al.  MIXED H2/μ OPTIMIZATION , 1995 .

[12]  Shirley J. Dyke,et al.  Benchmark problems in structural control : Part II : Active tendon system , 1998 .

[13]  M. Dahleh,et al.  Control of Uncertain Systems: A Linear Programming Approach , 1995 .

[14]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy an H(infinity)-norm bound and relations to risk sensitivity , 1988 .

[15]  T. T. Soong,et al.  Random Vibration of Mechanical and Structural Systems , 1992 .

[16]  D. B. Ridgely,et al.  Discrete-time, mixed-norm control synthesis applied to aircraft terrain following , 1996 .

[17]  Anthony J. Calise,et al.  Homotopy Algorithm for Fixed Order Mixed Design , 1996 .

[18]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[19]  Anthony J. Calise,et al.  Homotopy algorithm for fixed order mixed H2/H-infinity design , 1996 .

[20]  D. Jacques,et al.  A MATLAB toolbox for fixed-order, mixed-norm control synthesis , 1996 .

[21]  D. Bernstein,et al.  LQG control with an H/sup infinity / performance bound: a Riccati equation approach , 1989 .

[22]  J. Pearson,et al.  l^{1} -optimal feedback controllers for MIMO discrete-time systems , 1987 .

[23]  Petros G. Voulgaris Optimal H2/l1 control via duality theory , 1995, IEEE Trans. Autom. Control..