Tangent Bundle Curve Completion with Locally Connected Parallel Networks

We propose a theory for cortical representation and computation of visually completed curves that are generated by the visual system to fill in missing visual information (e.g., due to occlusions). Recent computational theories and physiological evidence suggest that although such curves do not correspond to explicit image evidence along their length, their construction emerges from corresponding activation patterns of orientation-selective cells in the primary visual cortex. Previous theoretical work modeled these patterns as least energetic 3D curves in the mathematical continuous space , which abstracts the mammalian striate cortex. Here we discuss the biological plausibility of this theory and present a neural architecture that implements it with locally connected parallel networks. Part of this contribution is also a first attempt to bridge the physiological literature on curve completion with the shape problem and a shape theory. We present completion simulations of our model in natural and synthetic scenes and discuss various observations and predictions that emerge from this theory in the context of curve completion.

[1]  Berthold K. P. Horn The Curve of Least Energy , 1983, TOMS.

[2]  Jacqueline M. Fulvio,et al.  Precision and consistency of contour interpolation , 2008, Vision Research.

[3]  G. Kanizsa,et al.  Organization in Vision: Essays on Gestalt Perception , 1979 .

[4]  Jean Petitot,et al.  Neurogeometry of V1 and Kanizsa Contours , 2002 .

[5]  Martin A. Giese,et al.  Biophysiologically Plausible Implementations of the Maximum Operation , 2002, Neural Computation.

[6]  Yves Frégnac,et al.  Shunting inhibition, a silent step in visual cortical computation , 2003, Journal of Physiology-Paris.

[7]  Lance R. Williams,et al.  Stochastic Completion Fields: A Neural Model of Illusory Contour Shape and Salience , 1995, Neural Computation.

[8]  A. Newell You can't play 20 questions with nature and win : projective comments on the papers of this symposium , 1973 .

[9]  P. Kellman,et al.  A theory of visual interpolation in object perception , 1991, Cognitive Psychology.

[10]  S. Zeki,et al.  Brain Activity Related to the Perception of Illusory Contours , 1996, NeuroImage.

[11]  Sharon E. Guttman,et al.  Contour interpolation revealed by a dot localization paradigm , 2004, Vision Research.

[12]  D. Ferster,et al.  Computational Diversity in Complex Cells of Cat Primary Visual Cortex , 2007, The Journal of Neuroscience.

[13]  Steven W. Zucker,et al.  Sketches with Curvature: The Curve Indicator Random Field and Markov Processes , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Ohad Ben-Shahar,et al.  Geometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex , 2004, Neural Computation.

[15]  R. Gregory,et al.  Cognitive Contours , 1972, Nature.

[16]  R Bellman,et al.  DYNAMIC PROGRAMMING AND A NEW FORMALISM IN THE CALCULUS OF VARIATIONS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Ohad Ben-Shahar,et al.  A Biologically-Inspired Theory for Non-axiomatic Parametric Curve Completion , 2010, ACCV.

[18]  T. Wiesel,et al.  Clustered intrinsic connections in cat visual cortex , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  Charles F. Stevens Models are common; good theories are scarce , 2000, Nature Neuroscience.

[20]  Michael J. Hawken,et al.  Macaque VI neurons can signal ‘illusory’ contours , 1993, Nature.

[21]  Cory T. Miller,et al.  Amodal completion of acoustic signals by a nonhuman primate , 2001, Nature Neuroscience.

[22]  Tomaso Poggio,et al.  Intracellular measurements of spatial integration and the MAX operation in complex cells of the cat primary visual cortex. , 2004, Journal of neurophysiology.

[23]  D. Mumford Elastica and Computer Vision , 1994 .

[24]  S. Zucker,et al.  Endstopping and curvature , 1989, Vision Research.

[25]  W. B. Pillsbury Beiträge zur Analyse der Gesichtswahrnehmungen , 1900 .

[26]  R. Carlyon How the brain separates sounds , 2004, Trends in Cognitive Sciences.

[27]  Ohad Ben-Shahar,et al.  Minimum length in the tangent bundle as a model for curve completion , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[28]  Clifford Stein,et al.  Introduction to Algorithms, 2nd edition. , 2001 .

[29]  V. TORREt,et al.  A synaptic mechanism possibly underlying directional , 1978 .

[30]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[31]  F. Kruggel,et al.  Hemodynamic and Electroencephalographic Responses to Illusory Figures: Recording of the Evoked Potentials during Functional MRI , 2001, NeuroImage.

[32]  Benjamin B. Kimia,et al.  Euler Spiral for Shape Completion , 2003, International Journal of Computer Vision.

[33]  S. Zucker,et al.  Endstopped neurons in the visual cortex as a substrate for calculating curvature , 1987, Nature.

[34]  Alfred M. Bruckstein,et al.  On Minimal Energy Trajectories , 1990, Comput. Vis. Graph. Image Process..

[35]  T. Gawne,et al.  Responses of primate visual cortical V4 neurons to simultaneously presented stimuli. , 2002, Journal of neurophysiology.

[36]  Anitha Pasupathy,et al.  Partial Occlusion Modulates Contour-Based Shape Encoding in Primate Area V4 , 2011, The Journal of Neuroscience.

[37]  N. Rubin,et al.  fMRI Activation in Response to Illusory Contours and Salient Regions in the Human Lateral Occipital Complex , 2003, Neuron.

[38]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[39]  K. O’Connor,et al.  Encoding of Illusory Continuity in Primary Auditory Cortex , 2007, Neuron.

[40]  D. Hubel,et al.  Ferrier lecture - Functional architecture of macaque monkey visual cortex , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[41]  R Shapley,et al.  Illusory contours activate specific regions in human visual cortex: evidence from functional magnetic resonance imaging. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[42]  M Dojat,et al.  Moving illusory contours activate primary visual cortex: an fMRI study. , 2000, Cerebral cortex.

[43]  T. Poggio,et al.  Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[44]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[45]  R. M. Warren Perceptual Restoration of Missing Speech Sounds , 1970, Science.

[46]  O. D. Creutzfeldt,et al.  Neuronal responses to borders with and without luminance gradients in cat visual cortex and dorsal lateral geniculate nucleus , 2004, Experimental Brain Research.

[47]  Ohad Ben-Shahar,et al.  The Perceptual Organization of Texture Flow: A Contextual Inference Approach , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[48]  R. Lawson,et al.  Stereopsis and anomalous contour. , 1967, Vision research.

[49]  W. Chase,et al.  Visual information processing. , 1974 .

[50]  P Kaposvári,et al.  The representation of Kanizsa illusory contours in the monkey inferior temporal cortex , 2008, The European journal of neuroscience.

[51]  Keith R. Kluender,et al.  Effects of glide slope, noise intensity, and noise duration on the extrapolation of FM glides through noise , 1992, Perception & psychophysics.

[52]  A. Dale,et al.  The Representation of Illusory and Real Contours in Human Cortical Visual Areas Revealed by Functional Magnetic Resonance Imaging , 1999, The Journal of Neuroscience.

[53]  T. Gawne,et al.  Responses of primate visual cortical neurons to stimuli presented by flash, saccade, blink, and external darkening. , 2002, Journal of neurophysiology.

[54]  Lance R. Williams,et al.  Local Parallel Computation of Stochastic Completion Fields , 1996, Neural Computation.

[55]  M. Sur,et al.  Orientation Maps of Subjective Contours in Visual Cortex , 1996, Science.

[56]  C. Bajaj Algebraic Geometry and its Applications , 1994 .

[57]  G. Orban,et al.  Responses of visual cortical neurons to curved stimuli and chevrons , 1990, Vision Research.

[58]  Isaac Weiss 3-D Shape Representation by Contours , 1985, IJCAI.

[59]  Albert S. Bregman,et al.  The Auditory Scene. (Book Reviews: Auditory Scene Analysis. The Perceptual Organization of Sound.) , 1990 .

[60]  S. Dreyfus Dynamic Programming and the Calculus of Variations , 1960 .

[61]  Walter Gerbino,et al.  Visual interpolation is not scale invariant , 2006, Vision Research.

[62]  S. Ullman,et al.  Filling-in the gaps: The shape of subjective contours and a model for their generation , 1976, Biological Cybernetics.

[63]  Y. Sugita Neuronal correlates of auditory induction in the cat cortex , 1997, Neuroreport.

[64]  Ohad Ben-Shahar,et al.  Curvature-based perceptual singularities and texture saliency with early vision mechanisms. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[65]  C. K. Ogden A Source Book Of Gestalt Psychology , 2013 .

[66]  W. Hoffman The visual cortex is a contact bundle , 1989 .

[67]  H Takeichi,et al.  The Effect of Curvature on Visual Interpolation , 1995, Perception.

[68]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[69]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[70]  Yoshitaka Nakajima,et al.  Auditory Scene Analysis: The Perceptual Organization of Sound Albert S. Bregman , 1992 .

[71]  D. Purves,et al.  Numbers of "blobs" in the primary visual cortex of neonatal and adult monkeys. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Shapley,et al.  Spatial and Temporal Properties of Illusory Contours and Amodal Boundary Completion , 1996, Vision Research.

[73]  T. Wiesel,et al.  Functional architecture of macaque monkey visual cortex , 1977 .

[74]  H. Barlow Vision Science: Photons to Phenomenology by Stephen E. Palmer , 2000, Trends in Cognitive Sciences.

[75]  John J. Foxe,et al.  The Spatiotemporal Dynamics of Illusory Contour Processing: Combined High-Density Electrical Mapping, Source Analysis, and Functional Magnetic Resonance Imaging , 2002, The Journal of Neuroscience.

[76]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[77]  Peter Ulric Tse,et al.  Volume Completion , 1999, Cognitive Psychology.

[78]  T. S. Lee,et al.  Dynamics of subjective contour formation in the early visual cortex. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[79]  Jacqueline M. Fulvio,et al.  Visual extrapolation of contour geometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[81]  R. von der Heydt,et al.  Illusory contours and cortical neuron responses. , 1984, Science.

[82]  Ohad Ben-Shahar,et al.  A Tangent Bundle Theory for Visual Curve Completion , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  S. Pollmann,et al.  Retinotopic Activation in Response to Subjective Contours in Primary Visual Cortex , 2008, Frontiers in human neuroscience.

[84]  T. Poggio,et al.  A synaptic mechanism possibly underlying directional selectivity to motion , 1978, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[85]  Ronen Basri,et al.  Completion energies and scale , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[86]  S. Maier,et al.  Widespread Periodic Intrinsic Connections in the Tree Shrew Visual Cortex , 2005 .