Design of Robust Quadratic Finite-Horizon Optimal Static Output Feedback Controllers for Linear Uncertain Singular Systems

By complementarily fusing the robust stabilizability condition, the orthogonal-functions approach (OFA) and the hybrid Taguchi-genetic algorithm (HTGA), an integrative method is proposed in this paper to design the robust-stable and quadratic-optimal static output feedback controller such that i) the linear singular control system with structured parameter uncertainties is regular, impulse-free and asymptotically stable and ii) a quadratic finite-horizon integral performance index for the linear nominal singular control system can be minimized. Based on some essential properties of matrix measures, a new sufficient condition is presented for ensuring that the linear singular system with structured and quadratically-coupled structured parameter uncertainties is regular, impulse free and asymptotically stable. By using the OFA and the robust stabilizability condition, the dynamic-optimization problem for the robust-stable and quadratic-optimal static output feedback control design of the linear uncertain singular system is transformed into a static-constrained-optimization problem represented by the algebraic equations with constraint of robust stabilizability condition; thus greatly simplifying the robust-stable and quadratic-optimal static output feedback control design problem of the linear uncertain singular system. Then, for the static-constrained-optimization problem, the HTGA is employed to find the robust-stable and quadratic-optimal static output feedback controller of the linear uncertain singular control system. One design example of the robust-stable and quadratic-optimal static output feedback controller for a mass-spring-damper mechanical system with structured parameter uncertainties is given to demonstrate the applicability of the proposed integrative approach.

[1]  Jyh-Horng Chou,et al.  Design of Optimal Controllers for Takagi–Sugeno Fuzzy-Model-Based Systems , 2007, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[2]  Dianhui Wang,et al.  On impulsive modes of linear singular systems subject to decentralized output feedback , 2003, IEEE Trans. Autom. Control..

[3]  J. Chou,et al.  Design of robust quadratic‐optimal controllers for uncertain singular systems using orthogonal function approach and genetic algorithm , 2008 .

[4]  Alexander Weinmann Uncertain Models and Robust Control , 2002 .

[5]  Jyh-Horng Chou,et al.  Regional eigenvalue-clustering robustness of linear uncertain multivariable output feedback PID control systems , 2009, J. Frankl. Inst..

[6]  C. Desoer,et al.  Feedback Systems: Input-Output Properties , 1975 .

[7]  P. Dorato,et al.  Static output feedback: a survey , 1994, Proceedings of 1994 33rd IEEE Conference on Decision and Control.

[8]  F. Lewis A survey of linear singular systems , 1986 .

[9]  Ing-Rong Horng,et al.  Eigenvalue clustering in subregions of the complex plane for interval dynamic systems , 1993 .

[10]  Application of Chebyshev polynomials to the optimal control of time-varying linear systems , 1985 .

[11]  Bernard Friedland,et al.  Control System Design: An Introduction to State-Space Methods , 1987 .

[12]  Dianhui Wang,et al.  Algebraic properties of singular systems subject to decentralized output feedback , 2002, IEEE Trans. Autom. Control..

[13]  J. Chou,et al.  Robust Stability Bound on Linear Time-Varying Uncertainties for Linear Digital Control Systems under Finite Wordlength Effects , 1996 .

[14]  Mohamed Darouach,et al.  Static output stabilisation of singular LPV systems: LMI formulation , 2008, 2008 47th IEEE Conference on Decision and Control.

[15]  P. Müller Optimal control of proper and nonproper descriptor systems , 2003 .

[16]  Jyh-Horng Chou,et al.  Stable and Quadratic Optimal Control for TS Fuzzy-Model-Based Time-Delay Control Systems , 2008, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[17]  Daniel J. Inman,et al.  Vibration: With Control, Measurement, and Stability , 1989 .

[18]  Tung-Kuan Liu,et al.  Hybrid Taguchi-genetic algorithm for global numerical optimization , 2004, IEEE Transactions on Evolutionary Computation.

[19]  Chunyu Yang,et al.  Positive Realness and Absolute Stability Problem of Descriptor Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[20]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[21]  Jyh-Horng Chou,et al.  Solutions of time-varying TS-fuzzy-model-based dynamic equations using a shifted Chebyshev series approach , 2005, Int. J. Syst. Sci..

[22]  F. Zhu,et al.  Robust H_∞Dynamic Output Feedback Stabilization for a Class of Uncertain Switched Singular Systems , 2008 .

[23]  Jyh-Horng Chou,et al.  Asymmetric Sufficient Condition for Stability Robustness of Singular Systems With Structured Parameter Uncertainties , 2001 .

[24]  Stephen Barnett,et al.  Matrix Methods for Engineers and Scientists , 1982 .

[25]  J. Chou,et al.  Stability robustness of continuous-time perturbed descriptor systems , 1999 .

[26]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[27]  Robert E. Skelton,et al.  Static output feedback controllers: stability and convexity , 1998, IEEE Trans. Autom. Control..

[28]  Jovan Stefanovski,et al.  LQ control of descriptor systems by cancelling structure at infinity , 2006 .

[29]  付主木,et al.  一类不确定切换奇异系统的动态输出反馈鲁棒 H ∞ 控制 , 2009 .

[30]  Jyh-Horng Chou,et al.  Robust Quadratic-Optimal Control of TS-Fuzzy-Model-Based Dynamic Systems With Both Elemental Parametric Uncertainties and Norm-Bounded Approximation Error , 2009, IEEE Transactions on Fuzzy Systems.

[31]  Tung-Kuan Liu,et al.  Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm , 2006, IEEE Trans. Neural Networks.

[32]  W.-H. Ho,et al.  Numerical solutions of time-varying TS-fuzzy-model-based time-delay dynamic equations via orthogonal functions , 2007, Int. J. Syst. Sci..

[33]  Norman S. Nise,et al.  Control Systems Engineering , 1991 .

[34]  Dianhui Wang,et al.  On regularizing singular systems by decentralized output feedback , 1999, IEEE Trans. Autom. Control..

[35]  Jyh-Horng Chou,et al.  Shifted-Chebyshev series solutions of Takagi-Sugeno fuzzy-model-based dynamic equations , 2005, Math. Comput. Simul..

[36]  Shin-Ju Chen,et al.  Robustness analysis of uncertain linear singular systems with output feedback control , 1999, IEEE Trans. Autom. Control..

[37]  C. Fang,et al.  An LMI approach to admissibilization of uncertain descriptor systems via static output feedback , 2003, Proceedings of the 2003 American Control Conference, 2003..