Hierarchical nickel valence gradient stabilizes high-nickel content layered cathode materials

[1]  Youngho Shin,et al.  Enhanced mechanical strength and electrochemical performance of core–shell structured high–nickel cathode material , 2020 .

[2]  J. Janek,et al.  The Role of Intragranular Nanopores in Capacity Fade of Nickel-Rich Layered Li(Ni1-x-yCoxMny)O2 Cathode Materials. , 2019, ACS nano.

[3]  Xiqian Yu,et al.  Anomalous metal segregation in lithium-rich material provides design rules for stable cathode in lithium-ion battery , 2019, Nature Communications.

[4]  Stefano Ermon,et al.  High‐Voltage Charging‐Induced Strain, Heterogeneity, and Micro‐Cracks in Secondary Particles of a Nickel‐Rich Layered Cathode Material , 2019, Advanced Functional Materials.

[5]  H. Xin,et al.  Bimetallic Nanoparticle Oxidation in Three Dimensions by Chemically Sensitive Electron Tomography and in Situ Transmission Electron Microscopy. , 2018, ACS nano.

[6]  Wei Xu,et al.  High-Performance Multi-Mode Ptychography Reconstruction on Distributed GPUs , 2018, 2018 New York Scientific Data Summit (NYSDS).

[7]  Xuanxuan Bi,et al.  Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release , 2018, Nature Energy.

[8]  Ji‐Guang Zhang,et al.  Coupling of electrochemically triggered thermal and mechanical effects to aggravate failure in a layered cathode , 2018, Nature Communications.

[9]  Feng Lin,et al.  Oxygen Release Induced Chemomechanical Breakdown of Layered Cathode Materials. , 2018, Nano letters.

[10]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[11]  Chong Seung Yoon,et al.  Capacity Fading of Ni-Rich Li[NixCoyMn1–x–y]O2 (0.6 ≤ x ≤ 0.95) Cathodes for High-Energy-Density Lithium-Ion Batteries: Bulk or Surface Degradation? , 2018 .

[12]  Yi Jiang,et al.  Tutorial on the Visualization of Volumetric Data Using tomviz , 2018, Microscopy Today.

[13]  Y S Chu,et al.  Design and performance of an X-ray scanning microscope at the Hard X-ray Nanoprobe beamline of NSLS-II. , 2017, Journal of synchrotron radiation.

[14]  Zahid Hussain,et al.  High-efficiency in situ resonant inelastic x-ray scattering (iRIXS) endstation at the Advanced Light Source. , 2017, The Review of scientific instruments.

[15]  Jianming Zheng,et al.  Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries , 2017, Nature Communications.

[16]  H. Xin,et al.  Interrogation of bimetallic particle oxidation in three dimensions at the nanoscale , 2016, Nature Communications.

[17]  M. Bugnet,et al.  Spatially resolved surface valence gradient and structural transformation of lithium transition metal oxides in lithium-ion batteries. , 2016, Physical chemistry chemical physics : PCCP.

[18]  William E. Gent,et al.  Persistent State‐of‐Charge Heterogeneity in Relaxed, Partially Charged Li1−xNi1/3Co1/3Mn1/3O2 Secondary Particles , 2016, Advanced materials.

[19]  Kyeongjae Cho,et al.  Mechanism of Oxygen Vacancy on Impeded Phase Transformation and Electrochemical Activation in Inactive Li2MnO3 , 2016 .

[20]  Lei Cheng,et al.  Metal segregation in hierarchically structured cathode materials for high-energy lithium batteries , 2016, Nature Energy.

[21]  Jung-Hyun Kim,et al.  Direct Experimental Probe of the Ni(II)/Ni(III)/Ni(IV) Redox Evolution in LiNi0.5Mn1.5O4 Electrodes , 2015 .

[22]  Deyu Wang,et al.  Correlation of oxygen non-stoichiometry to the instabilities and electrochemical performance of LiNi0.8Co0.1Mn0.1O2 utilized in lithium ion battery , 2015 .

[23]  Xiqian Yu,et al.  Structural changes and thermal stability of charged LiNixMnyCozO₂ cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy. , 2014, ACS applied materials & interfaces.

[24]  Jun Lu,et al.  Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries. , 2014, ChemSusChem.

[25]  K. Chung,et al.  Understanding local degradation of cycled Ni-rich cathode materials at high operating temperature for Li-ion batteries , 2014 .

[26]  Aleksandr Missiul,et al.  Effects of heat-treatment atmosphere on electrochemical performances of Ni-rich mixed-metal oxide (LiNi0.80Co0.15Mn0.05O2) as a cathode material for lithium ion battery , 2014 .

[27]  Francesco De Carlo,et al.  TomoPy: a framework for the analysis of synchrotron tomographic data , 2014, Optics & Photonics - Optical Engineering + Applications.

[28]  Feng Lin,et al.  Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries , 2014, Nature Communications.

[29]  Haoshen Zhou,et al.  Study of the lithium/nickel ions exchange in the layered LiNi0.42Mn0.42Co0.16O2 cathode material for lithium ion batteries: experimental and first-principles calculations , 2014 .

[30]  Barry Lai,et al.  X-Ray Nanoimaging: Instruments and Methods II , 2013 .

[31]  Daniel P. Abraham,et al.  Observation of Microstructural Evolution in Li Battery Cathode Oxide Particles by In Situ Electron Microscopy , 2013 .

[32]  Chong Seung Yoon,et al.  Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries , 2013 .

[33]  Brian H. Toby,et al.  GSAS‐II: the genesis of a modern open‐source all purpose crystallography software package , 2013 .

[34]  Jaephil Cho,et al.  A new type of protective surface layer for high-capacity Ni-based cathode materials: nanoscaled surface pillaring layer. , 2013, Nano letters.

[35]  Xiqian Yu,et al.  Correlating Structural Changes and Gas Evolution during the Thermal Decomposition of Charged LixNi0.8Co0.15Al0.05O2 Cathode Materials , 2013 .

[36]  Chong Seung Yoon,et al.  Nanostructured high-energy cathode materials for advanced lithium batteries. , 2012, Nature materials.

[37]  Yang-Kook Sun,et al.  A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries , 2011 .

[38]  Ilias Belharouak,et al.  High-energy cathode material for long-life and safe lithium batteries. , 2009, Nature materials.

[39]  H. Bang,et al.  Physical and Electrochemical Properties of Li [ Ni0.4Co x Mn0.6 − x ] O2 ( x = 0.1 – 0.4 ) Electrode Materials Synthesized via Coprecipitation , 2007 .

[40]  Ki-Soo Lee,et al.  Structural and Electrochemical Properties of Layered Li [ Ni1 − 2x Co x Mn x ] O2 ( x = 0.1 – 0.3 ) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[41]  K. Amine,et al.  Structural and Electrochemical Properties of Layered Li[Ni1-2xCoxMnx]O2 (x = 0.1 - 0.3) Positive Electrode Materials for Li-Ion Batteries , 2007 .

[42]  M. Yoshio,et al.  Oxygen deficiency, a key factor in controlling the cycle performance of Mn-spinel cathode for lithium-ion batteries , 2007 .

[43]  Michael Holzapfel,et al.  Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. , 2006, Journal of the American Chemical Society.

[44]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[45]  Jaephil Cho,et al.  Synthesis, Thermal, and Electrochemical Properties of AlPO4-Coated LiNi0.8Co0.1Mn0.1 O 2 Cathode Materials for a Li-Ion Cell , 2004 .

[46]  C. Delmas,et al.  Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2 , 2003 .

[47]  M. Yoshio,et al.  The effects of oxygen flow rate and anion doping on the performance of the LiNio2 electrode for lithium secondary batteries , 2002 .

[48]  T. Ohzuku,et al.  Electrochemistry and Structural Chemistry of LiNiO2 (R3̅m) for 4 Volt Secondary Lithium Cells , 1993 .

[49]  J. Goodenough,et al.  Synthesis and structural characterization of the normal spinel Li[Ni2]O4 , 1985 .

[50]  Arumugam Manthiram,et al.  A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries , 2017 .

[51]  Dean J. Miller,et al.  Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction , 2016 .

[52]  Haegyeom Kim,et al.  Understanding the Degradation Mechanisms of LiNi0.5Co0.2Mn0.3O2 Cathode Material in Lithium Ion Batteries , 2014 .

[53]  Y. Shao-horn,et al.  Oxygen Vacancies and Intermediate Spin Trivalent Cobalt Ions in Lithium-Overstoichiometric LiCoO2 , 2003 .

[54]  A. P. Hammersley,et al.  Two-dimensional detector software: From real detector to idealised image or two-theta scan , 1996 .