Octree Guided CNN With Spherical Kernels for 3D Point Clouds

We propose an octree guided neural network architecture and spherical convolutional kernel for machine learning from arbitrary 3D point clouds. The network architecture capitalizes on the sparse nature of irregular point clouds,and hierarchically coarsens the data representation with space partitioning. At the same time, the proposed spherical kernels systematically quantize point neighborhoods to identify local geometric structures in the data, while maintaining the properties of translation-invariance and asymmetry. We specify spherical kernels with the help of network neurons that in turn are associated with spatial locations.We exploit this association to avert dynamic kernel generation during network training that enables efficient learning with high resolution point clouds. The effectiveness of the proposed technique is established on the benchmark tasks of 3D object classification and segmentation, achieving competitive performance on ShapeNet and RueMonge2014 datasets.

[1]  Jing Huang,et al.  Point cloud labeling using 3D Convolutional Neural Network , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[2]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Andrew Zisserman,et al.  Spatial Transformer Networks , 2015, NIPS.

[4]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Leonidas J. Guibas,et al.  ShapeNet: An Information-Rich 3D Model Repository , 2015, ArXiv.

[6]  Ulrich Neumann,et al.  SGPN: Similarity Group Proposal Network for 3D Point Cloud Instance Segmentation , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[7]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[8]  Jianxiong Xiao,et al.  3D ShapeNets: A deep representation for volumetric shapes , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Hassan Foroosh,et al.  Sparse Convolutional Neural Networks , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Donald Meagher,et al.  Geometric modeling using octree encoding , 1982, Computer Graphics and Image Processing.

[11]  BentleyJon Louis Multidimensional binary search trees used for associative searching , 1975 .

[12]  Dushyant Rao,et al.  Vote3Deep: Fast object detection in 3D point clouds using efficient convolutional neural networks , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[13]  Matthias Nießner,et al.  3DMatch: Learning Local Geometric Descriptors from RGB-D Reconstructions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Silvio Savarese,et al.  3D Semantic Parsing of Large-Scale Indoor Spaces , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  William J. Dally,et al.  SCNN: An accelerator for compressed-sparse convolutional neural networks , 2017, 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA).

[16]  Jitendra Malik,et al.  Recognizing Objects in Range Data Using Regional Point Descriptors , 2004, ECCV.

[17]  Thomas Brox,et al.  Orientation-boosted Voxel Nets for 3D Object Recognition , 2016, BMVC.

[18]  Victor S. Lempitsky,et al.  Escape from Cells: Deep Kd-Networks for the Recognition of 3D Point Cloud Models , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[19]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[20]  Baoquan Chen,et al.  PointCNN , 2018, NIPS 2018.

[21]  Dong Tian,et al.  Mining Point Cloud Local Structures by Kernel Correlation and Graph Pooling , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[22]  Yinda Zhang,et al.  DeepContext: Context-Encoding Neural Pathways for 3D Holistic Scene Understanding , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[23]  Sebastian Scherer,et al.  VoxNet: A 3D Convolutional Neural Network for real-time object recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[24]  Yang Liu,et al.  O-CNN , 2017, ACM Trans. Graph..

[25]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[26]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[27]  Marc Pollefeys,et al.  Semantic3D.net: A new Large-scale Point Cloud Classification Benchmark , 2017, ArXiv.

[28]  Max Welling,et al.  Spherical CNNs , 2018, ICLR.

[29]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[30]  Peter V. Gehler,et al.  Efficient 2D and 3D Facade Segmentation Using Auto-Context , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[32]  Luc Van Gool,et al.  3D all the way: Semantic segmentation of urban scenes from start to end in 3D , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[34]  Luc Van Gool,et al.  Dynamic Filter Networks , 2016, NIPS.

[35]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[36]  Leonidas J. Guibas,et al.  SyncSpecCNN: Synchronized Spectral CNN for 3D Shape Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[38]  Leonidas J. Guibas,et al.  A scalable active framework for region annotation in 3D shape collections , 2016, ACM Trans. Graph..

[39]  Leonidas J. Guibas,et al.  FPNN: Field Probing Neural Networks for 3D Data , 2016, NIPS.

[40]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[41]  Federico Tombari,et al.  Unique shape context for 3d data description , 2010, 3DOR '10.

[42]  Laurens van der Maaten,et al.  3D Semantic Segmentation with Submanifold Sparse Convolutional Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[43]  Jiaxin Li,et al.  SO-Net: Self-Organizing Network for Point Cloud Analysis , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[44]  Luc Van Gool,et al.  Learning Where to Classify in Multi-view Semantic Segmentation , 2014, ECCV.

[45]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[46]  Gernot Riegler,et al.  OctNet: Learning Deep 3D Representations at High Resolutions , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).