A picture is worth a thousand words : content-based image retrieval techniques

In my dissertation I investigate techniques for improving the state of the art in content-based image retrieval. To place my work into context, I highlight the current trends and challenges in my field by analyzing over 200 recent articles. Next, I propose a novel paradigm called ‘artificial imagination’, which gives the retrieval system the power to imagine and think along with the user in terms of what she is looking for. I then introduce a new user interface for visualizing and exploring image collections, empowering the user to navigate large collections based on her own needs and preferences, while simultaneously providing her with an accurate sense of what the database has to offer. In the later chapters I present work dealing with millions of images and focus in particular on high-performance techniques that minimize memory and computational use for both near-duplicate image detection and web search. Finally, I show early work on a scene completion-based image retrieval engine, which synthesizes realistic imagery that matches what the user has in mind.

[1]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[2]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[3]  Martin D. Levine,et al.  Vision in Man and Machine , 1985 .

[4]  C. W. Therrien,et al.  Decision, Estimation and Classification: An Introduction to Pattern Recognition and Related Topics , 1989 .

[5]  Yoav Freund,et al.  A decision-theoretic generalization of on-line learning and an application to boosting , 1995, EuroCOLT.

[6]  Tomás Lozano-Pérez,et al.  A Framework for Multiple-Instance Learning , 1997, NIPS.

[7]  Ingemar J. Cox,et al.  Secure spread spectrum watermarking for multimedia , 1997, IEEE Trans. Image Process..

[8]  Jing Huang,et al.  Combining supervised learning with color correlograms for content-based image retrieval , 1997, MULTIMEDIA '97.

[9]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[10]  Christos Faloutsos,et al.  MindReader: Querying Databases Through Multiple Examples , 1998, VLDB.

[11]  Eero P. Simoncelli,et al.  Texture characterization via joint statistics of wavelet coefficient magnitudes , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[12]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[13]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[14]  Thomas S. Huang,et al.  Relevance feedback: a power tool for interactive content-based image retrieval , 1998, IEEE Trans. Circuits Syst. Video Technol..

[15]  S. Sclaroff,et al.  Combining textual and visual cues for content-based image retrieval on the World Wide Web , 1998, Proceedings. IEEE Workshop on Content-Based Access of Image and Video Libraries (Cat. No.98EX173).

[16]  Edward Y. Chang,et al.  RIME: a replicated image detector for the World Wide Web , 1998, Other Conferences.

[17]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[20]  James Ze Wang,et al.  IRM: integrated region matching for image retrieval , 2000, ACM Multimedia.

[21]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[22]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[23]  Paul A. Viola,et al.  Boosting Image Retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[24]  Thomas S. Huang,et al.  Optimizing learning in image retrieval , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[25]  Bo Zhang,et al.  Support vector machine learning for image retrieval , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  B. S. Manjunath,et al.  MPEG‐7 Homogeneous Texture Descriptor , 2001 .

[27]  Thomas S. Huang,et al.  Small sample learning during multimedia retrieval using BiasMap , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[28]  Edward Y. Chang,et al.  Support vector machine active learning for image retrieval , 2001, MULTIMEDIA '01.

[29]  David J. Kriegman,et al.  From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Christian Böhm,et al.  Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases , 2001, CSUR.

[31]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Nicu Sebe,et al.  Color-based retrieval , 2001, Pattern Recognit. Lett..

[33]  Chi-Ren Shyu,et al.  A hybrid tree approach for efficient image database retrieval with dynamic feedback , 2002, Object recognition supported by user interaction for service robots.

[34]  Hyeran Byun,et al.  Integrated region-based image retrieval using region's spatial relationships , 2002, Object recognition supported by user interaction for service robots.

[35]  Rahul Gupta,et al.  Leveraging non-relevant images to enhance image retrieval performance , 2002, MULTIMEDIA '02.

[36]  Djemel Ziou,et al.  Learning from negative example in relevance feedback for content-based image retrieval , 2002, Object recognition supported by user interaction for service robots.

[37]  Janghyun Yoon,et al.  Prefetching for content-based image retrieval , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[38]  Yueting Zhuang,et al.  Image retrieval and relevance feedback using peer indexing , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[39]  Xin Huang,et al.  Mining High-Level User Concepts with Multiple Instance Learning and Relevance Feedback for Content-Based Image Retrieval , 2002, Revised Papers from MDM/KDD and PAKDD/KDMCD.

[40]  Hanqing Lu,et al.  Solving the small sample size problem of LDA , 2002, Object recognition supported by user interaction for service robots.

[41]  Yimin Wu,et al.  A feature re-weighting approach for relevance feedback in image retrieval , 2002, Proceedings. International Conference on Image Processing.

[42]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[43]  Edward Y. Chang,et al.  DynDex: a dynamic and non-metric space indexer , 2002, MULTIMEDIA '02.

[44]  Bo Zhang,et al.  Gaussian mixture model for relevance feedback in image retrieval , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[45]  Yi-Ping Hung,et al.  A Bayesian Method for Content-Based Image Retrieval by Use of Relevance Feedback , 2002, VISUAL.

[46]  Fabio Roli,et al.  Query Shifting Based on Bayesian Decision Theory for Content-Based Image Retrieval , 2002, SSPR/SPR.

[47]  Erkki Oja,et al.  Implementing Relevance Feedback as Convolutions of Local Neighborhoods on Self-Organizing Maps , 2002, ICANN.

[48]  Hanqing Lu,et al.  The role of sample distribution in relevance feedback for content based image retrieval , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[49]  Thierry Pun,et al.  The Truth about Corel - Evaluation in Image Retrieval , 2002, CIVR.

[50]  Wei-Ying Ma,et al.  Learning and inferring a semantic space from user's relevance feedback for image retrieval , 2002, MULTIMEDIA '02.

[51]  Thomas S. Huang,et al.  Extending image retrieval with group-oriented interface , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[52]  Sugata Ghosal,et al.  An image retrieval system with automatic query modification , 2002, IEEE Trans. Multim..

[53]  ByoungChul Ko,et al.  Probabilistic neural networks supporting multi-class relevance feedback in region-based image retrieval , 2002, Object recognition supported by user interaction for service robots.

[54]  Yixin Chen,et al.  A Region-Based Fuzzy Feature Matching Approach to Content-Based Image Retrieval , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[55]  Bir Bhanu,et al.  Improving retrieval performance by long-term relevance information , 2002, Object recognition supported by user interaction for service robots.

[56]  Fabio Roli,et al.  Dissimilarity Representation of Images for Relevance Feedback in Content-Based Image Retrieval , 2003, MLDM.

[57]  Patrick Pérez,et al.  Object removal by exemplar-based inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[58]  Klaus Brinker,et al.  Incorporating Diversity in Active Learning with Support Vector Machines , 2003, ICML.

[59]  Lei Wang,et al.  A Dynamic Sub-vector Weighting Scheme for Image Retrieval with Relevance Feedback , 2003, Pattern Analysis & Applications.

[60]  B. S. Manjunath,et al.  Nearest neighbor search for relevance feedback , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[61]  Wenyin Liu,et al.  Joint semantics and feature based image retrieval using relevance feedback , 2003, IEEE Trans. Multim..

[62]  Qi Zhang,et al.  Image retrieval by fuzzy clustering of relevance feedback records , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[63]  Stefan M. Rüger,et al.  Relevance Feedback for Content-Based Image Retrieval: What Can Three Mouse Clicks Achieve? , 2003, ECIR.

[64]  Guang-Ho Cha,et al.  Bitmap indexing method for complex similarity queries with relevance feedback , 2003, MMDB '03.

[65]  Shi-Min Hu,et al.  Adaptive tree similarity learning for image retrieval , 2003, Multimedia Systems.

[66]  James C. French,et al.  Improving Image Retrieval Effectiveness via Multiple Queries , 2003, MMDB '03.

[67]  Edward Y. Chang,et al.  Enhancing DPF for near-replica image recognition , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[68]  Irfan A. Essa,et al.  Graphcut textures: image and video synthesis using graph cuts , 2003, ACM Trans. Graph..

[69]  Bo Zhang,et al.  Constructive Learning Algorithm-Based RBF Network for Relevance Feedback in Image Retrieval , 2003, CIVR.

[70]  Thomas S. Huang,et al.  Relevance feedback in image retrieval: A comprehensive review , 2003, Multimedia Systems.

[71]  Sharad Mehrotra,et al.  Relevance feedback techniques in the MARS image retrieval system , 2003, Multimedia Systems.

[72]  Min Chen,et al.  Image database retrieval utilizing affinity relationships , 2003, MMDB '03.

[73]  Li Liu,et al.  An Image Retrieval Method Based on Collaborative Filtering , 2003, IDEAL.

[74]  Shinsuke Nakajima,et al.  Amplifying the differences between your positive samples and neighbors in image retrieval , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[75]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[76]  Hanqing Lu,et al.  Multilevel Relevance Judgement, Loss Function, and Performance Measure in Image Retrieval , 2003, CIVR.

[77]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[78]  Yi-Shin Chen,et al.  Yoda, an adaptive soft classification model: content-based similarity queries and beyond , 2003, Multimedia Systems.

[79]  Bo Zhang,et al.  Learning in Region-Based Image Retrieval , 2003, CIVR.

[80]  Andrea Kutics,et al.  Linking images and keywords for semantics-based image retrieval , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[81]  Bir Bhanu,et al.  A new semi-supervised EM algorithm for image retrieval , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[82]  Bir Bhanu,et al.  Active concept learning for image retrieval in dynamic databases , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[83]  Changick Kim,et al.  Content-based image copy detection , 2003, Signal Process. Image Commun..

[84]  Ravi Kothari,et al.  Relevance feedback algorithm based on learning from labeled and unlabeled data , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[85]  Ramesh C. Jain Experiential computing , 2003, CACM.

[86]  Hanqing Lu,et al.  A practical SVM-based algorithm for ordinal regression in image retrieval , 2003, MULTIMEDIA '03.

[87]  Ling Guan,et al.  Image retrieval with embedded sub-class information using Gaussian mixture models , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[88]  Xin Huang,et al.  Incorporating real-valued multiple instance learning into relevance feedback for image retrieval , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[89]  Dacheng Tao,et al.  Orthogonal complement component analysis for positive samples in SVM based relevance feedback image retrieval , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[90]  Min Gyo Chung,et al.  Relevance Feedback Reinforced with Semantics Accumulation , 2004, CIVR.

[91]  Marin Ferecatu,et al.  Retrieval of difficult image classes using svd-based relevance feedback , 2004, MIR '04.

[92]  Xiaofei He Incremental semi-supervised subspace learning for image retrieval , 2004, MULTIMEDIA '04.

[93]  Zhongfei Zhang,et al.  Hidden semantic concept discovery in region based image retrieval , 2004, CVPR 2004.

[94]  Hyeran Byun,et al.  SVM-based salient region(s) extraction method for image retrieval , 2004, ICPR 2004.

[95]  Haim Schweitzer,et al.  Long-term learning of semantic grouping from relevance-feedback , 2004, MIR '04.

[96]  Mario A. Nascimento,et al.  Content-based sub-image retrieval using relevance feedback , 2004, MMDB '04.

[97]  Wei-Ying Ma,et al.  Learning an image manifold for retrieval , 2004, MULTIMEDIA '04.

[98]  Joo-Hwee Lim,et al.  A structured learning framework for content-based image indexing and visual query , 2005, Multimedia Systems.

[99]  Marin Ferecatu,et al.  Sample Selection Strategies for Relevance Feedback in Region-Based Image Retrieval , 2004, PCM.

[100]  Ling Guan,et al.  An interactive approach for CBIR using a network of radial basis functions , 2004, IEEE Transactions on Multimedia.

[101]  Michael R. Lyu,et al.  Group-based relevance feedback with support vector machine ensembles , 2004, ICPR 2004.

[102]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[103]  Yimin Wu,et al.  PatternQuest: learning patterns of interest using relevance feedback in multimedia information retrieval , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[104]  Yueting Zhuang,et al.  Towards Data-Adaptive and User-Adaptive Image Retrieval by Peer Indexing , 2004, International Journal of Computer Vision.

[105]  Combining visual features with semantics for a more effective image retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[106]  Dacheng Tao,et al.  Nonparametric discriminant analysis in relevance feedback for content-based image retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[107]  Edward Y. Chang,et al.  Multimodal concept-dependent active learning for image retrieval , 2004, MULTIMEDIA '04.

[108]  Mingjing Li,et al.  Relevance Feedback and Learning in Content-Based Image Search , 2004, World Wide Web.

[109]  Yasufumi Takama,et al.  Small Sample Size Performance of Evolutionary Algorithms for Adaptive Image Retrieval , 2004, CIVR.

[110]  Hanqing Lu,et al.  WillHunter: Interactive Image Retrieval with Multilevel Relevance Measurement , 2004, ICPR 2004.

[111]  YoungSik Choi,et al.  Relevance Feedback for Content-Based Image Retrieval Using Proximal Support Vector Machine , 2004, ICCSA.

[112]  Nicu Sebe,et al.  Boosting contextual information in content-based image retrieval , 2004, MIR '04.

[113]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[114]  Jingrui He,et al.  Mean version space: a new active learning method for content-based image retrieval , 2004, MIR '04.

[115]  Chi-Hang Chan,et al.  Using Biased Support Vector Machine to Improve Retrieval Result in Image Retrieval with Self-organizing Map , 2004, ICONIP.

[116]  John Bigelow,et al.  Similarity: Measurement, Ordering and Betweenness , 2004, KES.

[117]  Thomas S. Huang,et al.  A Discussion of Nonlinear Variants of Biased Discriminants for Interactive Image Retrieval , 2004, CIVR.

[118]  Yimin Wu,et al.  Interactive pattern analysis for relevance feedback in multimedia information retrieval , 2004, Multimedia Systems.

[119]  Derek Hoiem,et al.  Object-based image retrieval using the statistical structure of images , 2004, CVPR 2004.

[120]  Zhongfei Zhang,et al.  Stretching Bayesian Learning in the Relevance Feedback of Image Retrieval , 2004, ECCV.

[121]  Bo Zhang,et al.  Entropy-based active learning with support vector machines for content-based image retrieval , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[122]  Edward Y. Chang,et al.  Active learning and its scalability for image retrieval , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[123]  Thierry Pun,et al.  Learning from User Behavior in Image Retrieval: Application of Market Basket Analysis , 2004, International Journal of Computer Vision.

[124]  Chiou-Ting Hsu,et al.  Image retrieval with relevance feedback based on graph-theoretic region correspondence estimation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[125]  Kaizhu Huang,et al.  Biased support vector machine for relevance feedback in image retrieval , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[126]  Giorgio Giacinto,et al.  Nearest-prototype relevance feedback for content based image retrieval , 2004, ICPR 2004.

[127]  Hyeran Byun,et al.  SVM-based salient region(s) extraction method for image retrieval , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[128]  Iain Campbell,et al.  Interactive Evaluation of the Ostensive Model Using a New Test Collection of Images with Multiple Relevance Assessments , 2000, Information Retrieval.

[129]  Alessandra Lumini,et al.  A new approach for relevance feedback through positive and negative samples , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[130]  Douglas R. Heisterkamp,et al.  Learning in Region-Based Image Retrieval with Generalized Support Vector Machines , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[131]  Antonio Ortega,et al.  An user preference information based kernel for SVM active learning in content-based image retrieval , 2004, MIR '04.

[132]  Roberto Cipolla,et al.  Hole Filling Through Photomontage , 2005, BMVC.

[133]  James Ze Wang,et al.  Content-based image retrieval: approaches and trends of the new age , 2005, MIR '05.

[134]  Michael R. Lyu,et al.  A semi-supervised active learning framework for image retrieval , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[135]  Ilaria Bartolini Context-Based Image Similarity Queries , 2005, Adaptive Multimedia Retrieval.

[136]  Min Chen,et al.  A latent semantic indexing based method for solving multiple instance learning problem in region-based image retrieval , 2005, Seventh IEEE International Symposium on Multimedia (ISM'05).

[137]  Jing Peng,et al.  Kernel Vector Approximation Files for Relevance Feedback Retrieval in Large Image Databases , 2005, Multimedia Tools and Applications.

[138]  Lei Wang,et al.  Retrieval with knowledge-driven kernel design: an approach to improving SVM-based CBIR with relevance feedback , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[139]  Tommy W. S. Chow,et al.  Content-based image retrieval by using tree-structured features and multi-layer self-organizing map , 2006, Pattern Analysis and Applications.

[140]  Wei-Ying Ma,et al.  Multiple random walk and its application in content-based image retrieval , 2005, MIR '05.

[141]  Lei Wang,et al.  A novel framework for SVM-based image retrieval on large databases , 2005, MULTIMEDIA '05.

[142]  Farshad Fotouhi,et al.  Semantic feedback for interactive image retrieval , 2005, MULTIMEDIA '05.

[143]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[144]  Hwann-Tzong Chen,et al.  Semantic manifold learning for image retrieval , 2005, ACM Multimedia.

[145]  Zhongfei Zhang,et al.  FAST: Toward more effective and efficient image retrieval , 2005, Multimedia Systems.

[146]  Bipin C. Desai,et al.  Probabilistic Similarity Measures in Image Databases with SVM Based Categorization and Relevance Feedback , 2005, ICIAR.

[147]  Tomer Hertz,et al.  Learning a Mahalanobis Metric from Equivalence Constraints , 2005, J. Mach. Learn. Res..

[148]  Chun-Shien Lu,et al.  Geometric distortion-resilient image hashing scheme and its applications on copy detection and authentication , 2005, Multimedia Systems.

[149]  Michael S. Lew,et al.  Relevance Feedback Methods in Content Based Retrieval and Video Summarization , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[150]  Mark J. Huiskes,et al.  Aspect-Based Relevance Learning for Image Retrieval , 2005, CIVR.

[151]  Wei-Ying Ma,et al.  Multi-graph enabled active learning for multimodal web image retrieval , 2005, MIR '05.

[152]  Bir Bhanu,et al.  Integrating relevance feedback techniques for image retrieval using reinforcement learning , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[153]  Chengcui Zhang,et al.  Region-Based Image Clustering and Retrieval Using Multiple Instance Learning , 2005, CIVR.

[154]  Shinji Ozawa,et al.  HIRBIR: A hierarchical approach to region-based image retrieval , 2005, Multimedia Systems.

[155]  Wei-Ying Ma,et al.  A unified optimization based learning method for image retrieval , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[156]  Fang Liu,et al.  Evolving Optimal Feature Set by Interactive Reinforcement Learning for Image Retrieval , 2005, ISNN.

[157]  Marcel Worring,et al.  Relevance feedback based saliency adaptation in CBIR , 2005, Multimedia Systems.

[158]  Nicu Sebe,et al.  How to complete performance graphs in content-based image retrieval: add generality and normalize scope , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[159]  James C. French,et al.  Toward Consistent Evaluation of Relevance Feedback Approaches in Multimedia Retrieval , 2005, Adaptive Multimedia Retrieval.

[160]  Yi-Ping Hung,et al.  Region Filtering Using Color and Texture Features for Image Retrieval , 2005, CIVR.

[161]  Mingjing Li,et al.  Mapping low-level features to high-level semantic concepts in region-based image retrieval , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[162]  Shang-Hong Lai,et al.  Improved AdaBoost-Based Image Retrieval with Relevance Feedback via Paired Feature Learning , 2005, CIVR.

[163]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[164]  Min Chen,et al.  A Multiple Instance Learning Approach for Content Based Image Retrieval Using One-Class Support Vector Machine , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[165]  Xiang Peng,et al.  Imbalanced Learning in Relevance Feedback with Biased Minimax Probability Machine for Image Retrieval Tasks , 2006, ICONIP.

[166]  Hai Jin,et al.  Scalable relevance feedback using click-through data for web image retrieval , 2006, MM '06.

[167]  Hai Jin,et al.  Using Implicit Relevane Feedback to Advance Web Image Search , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[168]  Marcel Worring,et al.  Similarity learning via dissimilarity space in CBIR , 2006, MIR '06.

[169]  Lap-Pui Chau,et al.  Region-Based Image Retrieval using Radial Basis Function Network , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[170]  Gang Li,et al.  Integrating Local One-Class Classifiers for Image Retrieval , 2006, ADMA.

[171]  Joemon M. Jose,et al.  Evaluating a workspace’s usefulness for image retrieval , 2006, Multimedia Systems.

[172]  Weiming Lu,et al.  Region-Based Semantic Similarity Propagation for Image Retrieval , 2006, PCM.

[173]  Bin Wang,et al.  Large-Scale Duplicate Detection for Web Image Search , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[174]  Luo Si,et al.  Collaborative image retrieval via regularized metric learning , 2006, Multimedia Systems.

[175]  Eugene Kim,et al.  Overview of the ImageCLEFmed 2006 Medical Retrieval and Medical Annotation Tasks , 2006, CLEF.

[176]  Xuelong Li,et al.  Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[177]  Paul Over,et al.  Evaluation campaigns and TRECVid , 2006, MIR '06.

[178]  C. V. Jawahar,et al.  Efficient Region Based Indexing and Retrieval for Images with Elastic Bucket Tries , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[179]  Rama Chellappa,et al.  What Is the Range of Surface Reconstructions from a Gradient Field? , 2006, ECCV.

[180]  Yixin Chen,et al.  MILES: Multiple-Instance Learning via Embedded Instance Selection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[181]  Nikolas P. Galatsanos,et al.  A Relevance Feedback Approach for Content Based Image Retrieval Using Gaussian Mixture Models , 2006, ICANN.

[182]  David Hutchison,et al.  Semantic Image Retrieval Using Region-Based Relevance Feedback , 2006, Adaptive Multimedia Retrieval.

[183]  Zhi-Hua Zhou,et al.  Enhancing relevance feedback in image retrieval using unlabeled data , 2006, ACM Trans. Inf. Syst..

[184]  Marcel Worring,et al.  Benchmarking image and video retrieval: an overview , 2006, MIR '06.

[185]  Kien A. Hua,et al.  Fast Query Point Movement Techniques with Relevance Feedback for Content-Based Image Retrieval , 2006, EDBT.

[186]  Wei Liu,et al.  Learning Distance Metrics with Contextual Constraints for Image Retrieval , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[187]  Farshad Fotouhi,et al.  Building a user-centered semantic hierarchy in image databases , 2006, Multimedia Systems.

[188]  Xuelong Li,et al.  Direct kernel biased discriminant analysis: a new content-based image retrieval relevance feedback algorithm , 2006, IEEE Transactions on Multimedia.

[189]  Pietro Perona,et al.  One-shot learning of object categories , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[190]  Wan-Ting Su,et al.  Heuristic Pre-clustering Relevance Feedback in Region-Based Image Retrieval , 2006, ACCV.

[191]  Antonio Torralba,et al.  Building the gist of a scene: the role of global image features in recognition. , 2006, Progress in brain research.

[192]  Kongqiao Wang,et al.  Multi-View Sampling for Relevance Feedback in Image Retrieval , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[193]  Rong Jin,et al.  A unified log-based relevance feedback scheme for image retrieval , 2006 .

[194]  Gerald M. Knapp,et al.  Semantic image retrieval based on probabilistic latent semantic analysis , 2006, MM '06.

[195]  G. Cox,et al.  ~ " " " ' l I ~ " " -" . : -· " J , 2006 .

[196]  Thomas S. Huang,et al.  Leveraging Active Learning for Relevance Feedback Using an Information Theoretic Diversity Measure , 2006, CIVR.

[197]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[198]  Yelena Yesha,et al.  Fuzzy SVM Ensembles for Relevance Feedback in Image Retrieval , 2006, CIVR.

[199]  Parham Aarabi,et al.  Predictive Dynamic User Interfaces for Interactive Visual Search , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[200]  Joemon M. Jose,et al.  Adaptive image retrieval using a Graph model for semantic feature integration , 2006, MIR '06.

[201]  Qi Tian,et al.  Learning image manifolds by semantic subspace projection , 2006, MM '06.

[202]  Xiang Peng,et al.  Biased Minimax Probability Machine Active Learning for Relevance Feedback in Content-Based Image Retrieval , 2006, IDEAL.

[203]  Christian Bauckhage,et al.  Usability Evaluation for Image Retrieval Beyond Desktop Applications , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[204]  Mark J. Huiskes Image Searching and Browsing by Active Aspect-Based Relevance Learning , 2006, CIVR.

[205]  Ying Liu,et al.  An Interactive Region-Based Image Clustering and Retrieval Platform , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[206]  Joemon M. Jose,et al.  An adaptive technique for content-based image retrieval , 2006, Multimedia Tools and Applications.

[207]  Vijay V. Raghavan,et al.  Score Distribution Approach to Automatic Kernel Selection for Image Retrieval Systems , 2006, ISMIS.

[208]  Campbell Wilson,et al.  Feature Re-weighting in Content-Based Image Retrieval , 2006, CIVR.

[209]  Antonio Ortega,et al.  Quantization-based probabilistic feature modeling for kernel design in content-based image retrieval , 2006, MIR '06.

[210]  Xiaojun Qi,et al.  Image Retrieval Using Transaction-Based and SVM-Based Learning in Relevance Feedback Sessions , 2007, ICIAR.

[211]  Justin Zobel,et al.  Detection of near-duplicate images for web search , 2007, CIVR '07.

[212]  Bart Thomee,et al.  Visual information retrieval using synthesized imagery , 2007, CIVR '07.

[213]  Jun Jie Foo,et al.  Pruning SIFT for Scalable Near-duplicate Image Matching , 2007, ADC.

[214]  Kien A. Hua,et al.  An in-memory relevance feedback technique for high-performance image retrieval systems , 2007, CIVR '07.

[215]  B. S. Manjunath,et al.  Duplicate Image Detection in Large Scale Databases , 2007 .

[216]  Francesco G. B. De Natale,et al.  Content-Based Image Retrieval by Feature Adaptation and Relevance Feedback , 2007, IEEE Transactions on Multimedia.

[217]  Ning Zhang,et al.  Graph Cuts in Content-Based Image Classification and Retrieval with Relevance Feedback , 2007, PCM.

[218]  Rongrong Ji,et al.  A Novel Retrieval Refinement and Interaction Pattern by Exploring Result Correlations for Image Retrieval , 2007, Adaptive Multimedia Retrieval.

[219]  Marin Ferecatu,et al.  Semantic interactive image retrieval combining visual and conceptual content description , 2007, Multimedia Systems.

[220]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[221]  Rainer Lienhart,et al.  Image retrieval on large-scale image databases , 2007, CIVR '07.

[222]  Hichem Sahbi,et al.  Graph-Cut Transducers for Relevance Feedback in Content Based Image Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[223]  Nikolaos D. Doulamis Optimal Estimation of Descriptor Scales for Multimedia Retrieval , 2007, Eighth International Workshop on Image Analysis for Multimedia Interactive Services (WIAMIS '07).

[224]  Kun Zhou,et al.  Laplacian optimal design for image retrieval , 2007, SIGIR.

[225]  Sid Ray,et al.  A Comparison of Relevance Feedback Strategies in CBIR , 2007, 6th IEEE/ACIS International Conference on Computer and Information Science (ICIS 2007).

[226]  Jing Liu,et al.  Human behaviour consistent relevance feedback model for image retrieval , 2007, ACM Multimedia.

[227]  G. Griffin,et al.  Caltech-256 Object Category Dataset , 2007 .

[228]  Rongrong Ji,et al.  Visual & textual fusion for region retrieval: from both fuzzy matching and bayesian reasoning aspects , 2007, MIR '07.

[229]  Jian Guan,et al.  Learning user intention in relevance feedback using optimization , 2007, MIR '07.

[230]  Ling Guan,et al.  Application of Laplacian Mixture Model to Image and Video Retrieval , 2007, IEEE Transactions on Multimedia.

[231]  Jiawei Han,et al.  Spectral regression: a unified subspace learning framework for content-based image retrieval , 2007, ACM Multimedia.

[232]  Bart Thomee,et al.  An Artificial Imagination for Interactive Search , 2007, ICCV-HCI.

[233]  Justin Zobel,et al.  Discovery of Image Versions in Large Collections , 2007, MMM.

[234]  Yanhua Chen,et al.  Deriving semantics for image clustering from accumulated user feedbacks , 2007, ACM Multimedia.

[235]  Jian Guan,et al.  Modeling User Feedback Using a Hierarchical Graphical Model for Interactive Image Retrieval , 2007, PCM.

[236]  Xiaojun Qi,et al.  Learning from Relevance Feedback Sessions using a K-Nearest-Neighbor-Based Semantic Repository , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[237]  Lance Chun Che Fung,et al.  Establishing Semantic Relationship in Inter-query Learning for Content-Based Image Retrieval Systems , 2007, PAKDD.

[238]  Jiawei Han,et al.  Regularized regression on image manifold for retrieval , 2007, MIR '07.

[239]  Ron Meir,et al.  Reinforcement Learning, Spike-Time-Dependent Plasticity, and the BCM Rule , 2007, Neural Computation.

[240]  Sotirios Chatzis,et al.  A content-based image retrieval scheme allowing for robust automatic personalization , 2007, CIVR '07.

[241]  Hong Chang,et al.  Locally Smooth Metric Learning with Application to Image Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[242]  Lei Ye,et al.  An Unified Framework Based on p-Norm for Feature Aggregation in Content-Based Image Retrieval , 2007, ISM 2007.

[243]  Giorgio Giacinto,et al.  A nearest-neighbor approach to relevance feedback in content based image retrieval , 2007, CIVR '07.

[244]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[245]  Wei Liu,et al.  Relevance aggregation projections for image retrieval , 2008, CIVR '08.

[246]  Marcel Worring,et al.  Optimization of interactive visual-similarity-based search , 2008, TOMCCAP.

[247]  Phuong Nguyen,et al.  Relevance-Feedback Image Retrieval Based on Multiple-Instance Learning , 2008, Seventh IEEE/ACIS International Conference on Computer and Information Science (icis 2008).

[248]  Ling Guan,et al.  Content-based image retrieval via distributed databases , 2008, CIVR '08.

[249]  Bart Thomee,et al.  Using an artificial imagination for texture retrieval , 2008, 2008 19th International Conference on Pattern Recognition.

[250]  Vikram Pudi,et al.  FISH: a practical system for fast interactive image search in huge databases , 2008, CIVR '08.

[251]  Bir Bhanu,et al.  Long-Term Cross-Session Relevance Feedback Using Virtual Features , 2008, IEEE Transactions on Knowledge and Data Engineering.

[252]  Hui Zhang,et al.  Localized Content-Based Image Retrieval , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[253]  Kien A. Hua,et al.  Leveraging user query log: toward improving image data clustering , 2008, CIVR '08.

[254]  Matthieu Cord,et al.  Image Retrieval Over Networks: Active Learning Using Ant Algorithm , 2008, IEEE Transactions on Multimedia.

[255]  Mark J. Huiskes,et al.  Performance evaluation of relevance feedback methods , 2008, CIVR '08.

[256]  Bart Thomee,et al.  Large scale image copy detection evaluation , 2008, MIR '08.

[257]  Jiawei Han,et al.  Learning a Maximum Margin Subspace for Image Retrieval , 2008, IEEE Transactions on Knowledge and Data Engineering.

[258]  Jianping Fan,et al.  Mining Multilevel Image Semantics via Hierarchical Classification , 2008, IEEE Transactions on Multimedia.

[259]  Shih-Fu Chang,et al.  Visual islands: intuitive browsing of visual search results , 2008, CIVR '08.

[260]  Hanqing Lu,et al.  Selective Sampling Based on Dynamic Certainty Propagation for Image Retrieval , 2008, MMM.

[261]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[262]  Rujie Liu,et al.  SVM-based active feedback in image retrieval using clustering and unlabeled data , 2008, Pattern Recognit..

[263]  Alexei A. Efros,et al.  Scene completion using millions of photographs , 2008, Commun. ACM.

[264]  Mark J. Huiskes,et al.  The MIR flickr retrieval evaluation , 2008, MIR '08.

[265]  Qing Wang,et al.  Randomized sub-vectors hashing for high-dimensional image feature matching , 2008, ACM Multimedia.

[266]  Stephen J. McKenna,et al.  High-entropy layouts for content-based browsing and retrieval , 2009, CIVR '09.

[267]  M.S. Lew,et al.  An exploration-based interface for interactive image retrieval , 2009, 2009 Proceedings of 6th International Symposium on Image and Signal Processing and Analysis.

[268]  Bart Thomee,et al.  Deep exploration for experiential image retrieval , 2009, MM '09.

[269]  Zhiwu Lu,et al.  Context-based multi-label image annotation , 2009, CIVR '09.

[270]  Hai Jin,et al.  Label to region by bi-layer sparsity priors , 2009, MM '09.

[271]  Zhouyu Fu,et al.  An instance selection approach to Multiple instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[272]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[273]  Lei Zhang,et al.  A Unified Relevance Feedback Framework for Web Image Retrieval , 2009, IEEE Transactions on Image Processing.

[274]  Janko Calic,et al.  FreeEye: interactive intuitive interface for large-scale image browsing , 2009, MM '09.

[275]  Changsheng Xu,et al.  Multi-view multi-label active learning for image classification , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[276]  Yongdong Zhang,et al.  Locally non-negative linear structure learning for interactive image retrieval , 2009, MM '09.

[277]  Rong Jin,et al.  Semisupervised SVM batch mode active learning with applications to image retrieval , 2009, TOIS.

[278]  Christos Diou,et al.  Image annotation using clickthrough data , 2009, CIVR '09.

[279]  Jun Zhang,et al.  Content Based Image Retrieval Using Unclean Positive Examples , 2009, IEEE Transactions on Image Processing.

[280]  Kenneth Rose,et al.  Towards Optimal Indexing for Relevance Feedback in Large Image Databases$^+$ , 2009, IEEE Transactions on Image Processing.

[281]  Pietro Perona,et al.  Scaling object recognition: Benchmark of current state of the art techniques , 2009, 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops.

[282]  R. Geelen Een beeld zegt meer dan duizend woorden , 2009 .

[283]  B. Thomee,et al.  Combining Visual Exploration and Searching for Interactive Texture Retrieval , 2009 .

[284]  Winston H. Hsu,et al.  Query expansion for hash-based image object retrieval , 2009, ACM Multimedia.

[285]  Wanggen Wan,et al.  Image co-clustering with multi-modality features and user feedbacks , 2009, MM '09.

[286]  Chun Chen,et al.  Convex experimental design using manifold structure for image retrieval , 2009, MM '09.

[287]  Dong Guo,et al.  Color Me Right-Seamless Image Compositing , 2009, CAIP.

[288]  Jun Zhang,et al.  Image retrieval using noisy query , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[289]  Samuel Kaski,et al.  GaZIR: gaze-based zooming interface for image retrieval , 2009, ICMI-MLMI '09.

[290]  Xin Yang,et al.  Near-duplicate detection for images and videos , 2009, LS-MMRM '09.

[291]  Xiaojun Qi,et al.  A fuzzy combined learning approach to content-based image retrieval , 2009, 2009 IEEE International Conference on Multimedia and Expo.

[292]  Bart Thomee,et al.  TOP-SURF: a visual words toolkit , 2010, ACM Multimedia.

[293]  Bart Thomee,et al.  New trends and ideas in visual concept detection: the MIR flickr retrieval evaluation initiative , 2010, MIR '10.

[294]  Paul Clough,et al.  ImageCLEF: Experimental Evaluation in Visual Information Retrieval , 2010 .

[295]  Dacheng Tao,et al.  Biased Discriminant Euclidean Embedding for Content-Based Image Retrieval , 2010, IEEE Transactions on Image Processing.

[296]  Ioannis Pitas,et al.  Image replica detection system utilizing R-trees and linear discriminant analysis , 2010, Pattern Recognit..

[297]  Xiaofei He,et al.  Laplacian Regularized D-Optimal Design for Active Learning and Its Application to Image Retrieval , 2010, IEEE Transactions on Image Processing.