Location determination of metal nanoparticles relative to a metal-organic framework

[1]  Hai‐Long Jiang,et al.  Metal–organic frameworks: Structures and functional applications , 2019, Materials Today.

[2]  Qiang Xu,et al.  Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. , 2017, Chemical Society reviews.

[3]  Ashlee J Howarth,et al.  Postsynthetic Tuning of Metal-Organic Frameworks for Targeted Applications. , 2017, Accounts of chemical research.

[4]  Shuhong Yu,et al.  Singlet Oxygen-Engaged Selective Photo-Oxidation over Pt Nanocrystals/Porphyrinic MOF: The Roles of Photothermal Effect and Pt Electronic State. , 2017, Journal of the American Chemical Society.

[5]  Jinghua Guo,et al.  Explaining the Size Dependence in Platinum-Nanoparticle-Catalyzed Hydrogenation Reactions. , 2016, Angewandte Chemie.

[6]  Zhanxi Fan,et al.  Template Synthesis of Noble Metal Nanocrystals with Unusual Crystal Structures and Their Catalytic Applications. , 2016, Accounts of chemical research.

[7]  H. Yano,et al.  Particle-size effect of Pt cathode catalysts on durability in fuel cells , 2016 .

[8]  Chunying Duan,et al.  Metal–Organic Frameworks: Versatile Materials for Heterogeneous Photocatalysis , 2016 .

[9]  L. Gu,et al.  Metal–organic frameworks as selectivity regulators for hydrogenation reactions , 2016, Nature.

[10]  Yuanjing Cui,et al.  Emerging Multifunctional Metal–Organic Framework Materials , 2016, Advanced materials.

[11]  Jun Yao,et al.  Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity , 2016, Nature Communications.

[12]  Yadong Li,et al.  Amorphous nickel boride membrane on a platinum–nickel alloy surface for enhanced oxygen reduction reaction , 2016, Nature Communications.

[13]  Yi Luo,et al.  Boosting Photocatalytic Hydrogen Production of a Metal-Organic Framework Decorated with Platinum Nanoparticles: The Platinum Location Matters. , 2016, Angewandte Chemie.

[14]  G. Guo,et al.  Microfluidic Synthesis Enables Dense and Uniform Loading of Surfactant-Free PtSn Nanocrystals on Carbon Supports for Enhanced Ethanol Oxidation. , 2016, Angewandte Chemie.

[15]  W. Zhou,et al.  Metal‐Organic Frameworks as Platforms for Functional Materials , 2016 .

[16]  R. Luque,et al.  Controllable Encapsulation of “Clean” Metal Clusters within MOFs through Kinetic Modulation: Towards Advanced Heterogeneous Nanocatalysts , 2016, Angewandte Chemie.

[17]  Shuhong Yu,et al.  Pd Nanocubes@ZIF-8: Integration of Plasmon-Driven Photothermal Conversion with a Metal-Organic Framework for Efficient and Selective Catalysis. , 2016, Angewandte Chemie.

[18]  W. Zhou,et al.  Metal-Organic Frameworks as Platforms for Functional Materials. , 2016, Accounts of chemical research.

[19]  Phil de Luna,et al.  A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification , 2015, Science Advances.

[20]  Yadong Li,et al.  Platinum–nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving , 2015, Nature Communications.

[21]  C. Doherty,et al.  Membranes with artificial free-volume for biofuel production , 2015, Nature Communications.

[22]  H J Zhang,et al.  Charge-to-Spin Conversion and Spin Diffusion in Bi/Ag Bilayers Observed by Spin-Polarized Positron Beam. , 2015, Physical review letters.

[23]  Shuhong Yu,et al.  Multifunctional PdAg@MIL-101 for One-Pot Cascade Reactions: Combination of Host–Guest Cooperation and Bimetallic Synergy in Catalysis , 2015 .

[24]  Chaoyang Jiang,et al.  pH-modulated molecular assemblies and surface properties of metal-organic supercontainers at the air-water interface. , 2014, Angewandte Chemie.

[25]  H. Zhou,et al.  Metal-organic frameworks (MOFs). , 2014, Chemical Society reviews.

[26]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[27]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[28]  A. Matzger,et al.  Positronium emission spectra from self-assembled metal-organic frameworks , 2014 .

[29]  Zhiyong Guo,et al.  Pt Nanoclusters Confined within Metal–Organic Framework Cavities for Chemoselective Cinnamaldehyde Hydrogenation , 2014 .

[30]  Chong Xiao,et al.  Vacancy associates promoting solar-driven photocatalytic activity of ultrathin bismuth oxychloride nanosheets. , 2013, Journal of the American Chemical Society.

[31]  K. Hara,et al.  Low-temperature oxidation of ethylene over platinum nanoparticles supported on mesoporous silica. , 2013, Angewandte Chemie.

[32]  Wen‐Cui Li,et al.  Thin porous alumina sheets as supports for stabilizing gold nanoparticles. , 2013, ACS nano.

[33]  A. Matzger,et al.  Evidence of Positronium Bloch states in porous crystals of Zn4O-coordination polymers. , 2013, Physical review letters.

[34]  C. Campbell The energetics of supported metal nanoparticles: relationships to sintering rates and catalytic activity. , 2013, Accounts of chemical research.

[35]  Alaaldin M. Alkilany,et al.  The gold standard: gold nanoparticle libraries to understand the nano-bio interface. , 2013, Accounts of chemical research.

[36]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[37]  Younan Xia,et al.  Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. , 2012, Chemical Society reviews.

[38]  F. Tao,et al.  Action of bimetallic nanocatalysts under reaction conditions and during catalysis: evolution of chemistry from high vacuum conditions to reaction conditions. , 2012, Chemical Society reviews.

[39]  Zipeng Zhao,et al.  Yolk-shell nanocrystal@ZIF-8 nanostructures for gas-phase heterogeneous catalysis with selectivity control. , 2012, Journal of the American Chemical Society.

[40]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[41]  Yi Wang,et al.  Imparting functionality to a metal-organic framework material by controlled nanoparticle encapsulation. , 2012, Nature chemistry.

[42]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[43]  D. Zhao,et al.  Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. , 2012, Journal of the American Chemical Society.

[44]  Xiujian Zhao,et al.  Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. , 2011, Journal of the American Chemical Society.

[45]  Qiang Xu,et al.  Recent progress in synergistic catalysis over heterometallic nanoparticles , 2011 .

[46]  G. Seifert,et al.  High-pressure in situ 129Xe NMR spectroscopy and computer simulations of breathing transitions in the metal-organic framework Ni2(2,6-ndc)2(dabco) (DUT-8(Ni)). , 2011, Journal of the American Chemical Society.

[47]  T. Akita,et al.  Propene epoxidation with O2 and H2: Identification of the most active gold clusters , 2011 .

[48]  T. Akita,et al.  Ultrafine gold clusters incorporated into a metal-organic framework. , 2011, Chemistry.

[49]  T. Loiseau,et al.  129Xe NMR study of the framework flexibility of the porous hybrid MIL-53(Al). , 2010, Journal of the American Chemical Society.

[50]  Y. Tonbul,et al.  Ruthenium(0) nanoclusters stabilized by a Nanozeolite framework: isolable, reusable, and green catalyst for the hydrogenation of neat aromatics under mild conditions with the unprecedented catalytic activity and lifetime. , 2010, Journal of the American Chemical Society.

[51]  G. Christou,et al.  Molecular wheels as nanoporous materials: differing modes of gas diffusion through Ga10 and Ga18 wheels probed by hyperpolarized 129Xe NMR spectroscopy. , 2010, Journal of the American Chemical Society.

[52]  Kai Sun,et al.  Solution-based evolution and enhanced methanol oxidation activity of monodisperse platinum-copper nanocubes. , 2009, Angewandte Chemie.

[53]  Omar M Yaghi,et al.  The pervasive chemistry of metal-organic frameworks. , 2009, Chemical Society reviews.

[54]  Feng Tao,et al.  Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles , 2008, Science.

[55]  P. Sozzani,et al.  Nanochannels of two distinct cross-sections in a porous Al-based coordination polymer. , 2008, Journal of the American Chemical Society.

[56]  C. Serre,et al.  Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. , 2008, Angewandte Chemie.

[57]  Manos Mavrikakis,et al.  Ru-Pt core-shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. , 2008, Nature materials.

[58]  X. Bao,et al.  Probing the porosity of cocrystallized MCM-49/ZSM-35 zeolites by hyperpolarized 129Xe NMR. , 2008, The journal of physical chemistry. B.

[59]  P. Sozzani,et al.  2D multinuclear NMR, hyperpolarized xenon and gas storage in organosilica nanochannels with crystalline order in the walls. , 2007, Journal of the American Chemical Society.

[60]  J. Nørskov,et al.  Ligand effects in heterogeneous catalysis and electrochemistry , 2007 .

[61]  T. Ohdaira,et al.  Tunable pores in mesoporous silica films studied using a pulsed slow positron beam , 2007 .

[62]  S. Kaskel,et al.  Characterization of the metal-organic framework compound Cu3(benzene 1,3,5-tricarboxylate)2 by means of 129Xe nuclear magnetic and electron paramagnetic resonance spectroscopy. , 2006, The journal of physical chemistry. B.

[63]  D. Loffreda,et al.  Theoretical evidence of PtSn alloy efficiency for CO oxidation. , 2006, Journal of the American Chemical Society.

[64]  G. Hutchings,et al.  Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Au-Pd/TiO2 Catalysts , 2006, Science.

[65]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[66]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[67]  P. Nambissan,et al.  Positron annihilation studies of some anomalous features of Ni Fe 2 O 4 nanocrystals grown in Si O 2 , 2005 .

[68]  Chia-Min Yang,et al.  Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation , 2003 .

[69]  R. Sheldon,et al.  Catalytic oxidations of alcohols , 2003 .

[70]  R. Sheldon,et al.  Green, catalytic oxidations of alcohols. , 2002, Accounts of chemical research.

[71]  Y. Kawazoe,et al.  Positron confinement in ultrafine embedded particles: Quantum-dot-like state in an Fe-Cu alloy , 2000 .

[72]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[73]  J. Kansy Microcomputer program for analysis of positron annihilation lifetime spectra , 1996 .

[74]  Long,et al.  High-field NMR of adsorbed xenon polarized by laser pumping. , 1991, Physical review letters.

[75]  R. Nieminen,et al.  Positron affinities for elemental metals , 1989 .