Multi-media RISC informatics: retrieving information with simple structural components

This paper presents a novel architecture for building special-purpose agents for solving the information capture and access problem in large, unstructured data environments with uncertainty in data representation and interpretation. The key idea is to recognize and use underlying structure in such environments using simple components with specified performance guarantees connected by effective communication protocols. This paper brings together ideas from systems and theory: the design of mobile robots in unstructured physical environments, work in electronic libraries and know bets, topology, as well as the rich research in information retrieval and filtering to design a concrete software architecture for solving a wide range of highlevel user queries in multi-media environments.

[1]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[2]  Haruo Asada,et al.  Major components of a complete text reading system , 1992 .

[3]  Rodney A. Brooks,et al.  Elephants don't play chess , 1990, Robotics Auton. Syst..

[4]  Sargur N. Srihari,et al.  Classification of newspaper image blocks using texture analysis , 1989, Comput. Vis. Graph. Image Process..

[5]  John Canny,et al.  A RISC Paradigm for Industrial Robotics , 1993 .

[6]  Friedrich M. Wahl,et al.  Document Analysis System , 1982, IBM J. Res. Dev..

[7]  Yasuaki Nakano,et al.  Segmentation methods for character recognition: from segmentation to document structure analysis , 1992, Proc. IEEE.

[8]  I. I. Artobolevskiĭ Mechanisms in modern engineering design , 1975 .

[9]  Bruce Randall Donald,et al.  On Information Invariants in Robotics , 1995, Artif. Intell..

[10]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[11]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[12]  Stephen Robertson,et al.  The methodology of information retrieval experiment , 1981 .

[13]  James R. Munkres,et al.  Topology; a first course , 1974 .

[14]  Anil K. Jain,et al.  Address block location on envelopes using Gabor filters , 1992, Pattern Recognit..

[15]  Michael E. Lesk,et al.  The CORE electronic chemistry library , 1991, SIGIR '91.

[16]  Masaaki Mizuno,et al.  Document Recognition System with Layout Structure Generator , 1990, MVA.

[17]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[19]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[20]  Gerard Salton,et al.  Automatic Text Processing: The Transformation, Analysis, and Retrieval of Information by Computer , 1989 .

[21]  Bruce Randall Donald,et al.  Constructive recognizability for task-directed robot programming , 1992, Robotics Auton. Syst..

[22]  Mahesh Viswanathan,et al.  A prototype document image analysis system for technical journals , 1992, Computer.

[23]  Daniel P. Huttenlocher,et al.  Tracking non-rigid objects in complex scenes , 1993, 1993 (4th) International Conference on Computer Vision.