Key Aspects for Achieving Hits by Virtual Screening Studies

[1]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[2]  Carlos J. Camacho,et al.  Optimal strategies for virtual screening of induced-fit and flexible target in the 2015 D3R Grand Challenge , 2016, Journal of Computer-Aided Molecular Design.

[3]  Björn Krüger,et al.  The holistic integration of virtual screening in drug discovery. , 2013, Drug discovery today.

[4]  E. Lionta,et al.  Structure-Based Virtual Screening for Drug Discovery: Principles, Applications and Recent Advances , 2014, Current topics in medicinal chemistry.

[5]  Pedro J. Ballester,et al.  Prospective virtual screening for novel p53–MDM2 inhibitors using ultrafast shape recognition , 2014, Journal of Computer-Aided Molecular Design.

[6]  Matthieu Montes,et al.  Predictiveness curves in virtual screening , 2015, Journal of Cheminformatics.

[7]  Shaomeng Wang,et al.  How Does Consensus Scoring Work for Virtual Library Screening? An Idealized Computer Experiment , 2001, J. Chem. Inf. Comput. Sci..

[8]  Sheisi Fonseca Leite da Silva Rocha,et al.  Virtual Screening Techniques in Drug Discovery: Review and Recent Applications. , 2019, Current topics in medicinal chemistry.

[9]  Karima Sid,et al.  Big Data Analytics Techniques in Virtual Screening for Drug Discovery , 2017, BDCA'17.

[10]  Ashutosh Kumar,et al.  Advances in the Development of Shape Similarity Methods and Their Application in Drug Discovery , 2018, Front. Chem..

[11]  Gergely M Makara,et al.  On sampling of fragment space. , 2007, Journal of medicinal chemistry.

[12]  Yurii S. Moroz,et al.  Ultra-large library docking for discovering new chemotypes , 2019, Nature.

[13]  Xiaoqin Zou,et al.  Scoring functions and their evaluation methods for protein-ligand docking: recent advances and future directions. , 2010, Physical chemistry chemical physics : PCCP.

[14]  Lester A. Mitscher,et al.  Glossary of terms used in medicinal chemistry , 1998 .

[15]  Osman Güner,et al.  Pharmacophore modeling and three dimensional database searching for drug design using catalyst: recent advances. , 2004, Current medicinal chemistry.

[16]  Adrià Cereto-Massagué,et al.  Molecular fingerprint similarity search in virtual screening. , 2015, Methods.

[17]  Ji-Bo Wang,et al.  A retrosynthetic analysis algorithm implementation , 2019, Journal of Cheminformatics.

[18]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Randy J. Read,et al.  A multiple‐start Monte Carlo docking method , 1992 .

[20]  C. Tice,et al.  Selecting the right compounds for screening: does Lipinski's Rule of 5 for pharmaceuticals apply to agrochemicals? , 2001, Pest management science.

[21]  Olivier Sperandio,et al.  In Silico ADME/Tox Predictions , 2010 .

[22]  John J. Irwin,et al.  ZINC 15 – Ligand Discovery for Everyone , 2015, J. Chem. Inf. Model..

[23]  Sascha Hunold,et al.  LigandScout Remote: A New User-Friendly Interface for HPC and Cloud Resources , 2018, J. Chem. Inf. Model..

[24]  David B. Searls,et al.  Data integration: challenges for drug discovery , 2005, Nature Reviews Drug Discovery.

[25]  Richard A. Lewis,et al.  Three-dimensional pharmacophore methods in drug discovery. , 2010, Journal of medicinal chemistry.

[26]  Adrià Cereto-Massagué,et al.  The Light and Dark Sides of Virtual Screening: What Is There to Know? , 2019, International journal of molecular sciences.

[27]  J. Scott Dixon,et al.  Flexible ligand docking using a genetic algorithm , 1995, J. Comput. Aided Mol. Des..

[28]  Pedro Alexandrino Fernandes,et al.  Protein–ligand docking: Current status and future challenges , 2006, Proteins.

[29]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[30]  A. Selvan,et al.  Identification of Novel Human Immunodeficiency Virus-1 Integrase Inhibitors by Shape-Based Virtual Screening , 2010 .

[31]  Thierry Langer,et al.  LigandScout: 3-D Pharmacophores Derived from Protein-Bound Ligands and Their Use as Virtual Screening Filters , 2005, J. Chem. Inf. Model..

[32]  C. Taft,et al.  Prediction of the Three-Dimensional Structure of Phosphate-6-mannose PMI Present in the Cell Membrane of Xanthomonas citri subsp. citri of Interest for the Citrus Canker Control , 2020 .

[33]  Stephen R. Johnson,et al.  Molecular properties that influence the oral bioavailability of drug candidates. , 2002, Journal of medicinal chemistry.

[34]  Jürgen Bajorath,et al.  New methodologies for ligand-based virtual screening. , 2005, Current pharmaceutical design.

[35]  Tudor I. Oprea,et al.  The Design of Leadlike Combinatorial Libraries. , 1999, Angewandte Chemie.

[36]  Thomas Lengauer,et al.  A fast flexible docking method using an incremental construction algorithm. , 1996, Journal of molecular biology.

[37]  Aniko Simon,et al.  eHiTS: a new fast, exhaustive flexible ligand docking system. , 2007, Journal of molecular graphics & modelling.

[38]  Horacio Pérez-Sánchez,et al.  A review of ligand-based virtual screening web tools and screening algorithms in large molecular databases in the age of big data. , 2018, Future medicinal chemistry.

[39]  Chris G. Kruse,et al.  Assessment of scaffold hopping efficiency by use of molecular interaction fingerprints. , 2008, Journal of medicinal chemistry.

[40]  Zhiyong Lu,et al.  The CHEMDNER corpus of chemicals and drugs and its annotation principles , 2015, Journal of Cheminformatics.

[41]  R. Walensky,et al.  The Costs of Drugs in Infectious Diseases: Branded, Generics, and Why We Should Care. , 2019, The Journal of infectious diseases.

[42]  Haichun Liu,et al.  Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors , 2012, Journal of Molecular Modeling.

[43]  ANATOLY M. RUVINSKY Role of binding entropy in the refinement of protein–ligand docking predictions: Analysis based on the use of 11 scoring functions , 2007, J. Comput. Chem..

[44]  Mohammed Mumtaz Al-Dabbagh,et al.  Adapting Document Similarity Measures for Ligand-Based Virtual Screening , 2016, Molecules.

[45]  Li Xing,et al.  Influence of molecular flexibility and polar surface area metrics on oral bioavailability in the rat. , 2004, Journal of medicinal chemistry.

[46]  C. Wermuth,et al.  Glossary of terms used in medicinal chemistry (IUPAC Recommendations 1998) , 1998 .

[47]  Hanna Geppert,et al.  Current Trends in Ligand-Based Virtual Screening: Molecular Representations, Data Mining Methods, New Application Areas, and Performance Evaluation , 2010, J. Chem. Inf. Model..

[48]  Paul W Finn,et al.  Ultrafast shape recognition: evaluating a new ligand-based virtual screening technology. , 2009, Journal of molecular graphics & modelling.

[49]  Walter Filgueira de Azevedo,et al.  Molecular docking algorithms. , 2008, Current drug targets.

[50]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[51]  Gary Tresadern,et al.  A comparison of ligand based virtual screening methods and application to corticotropin releasing factor 1 receptor. , 2009, Journal of molecular graphics & modelling.

[52]  Gisbert Schneider,et al.  Virtual screening: an endless staircase? , 2010, Nature Reviews Drug Discovery.

[53]  Supa Hannongbua,et al.  In-silico ADME models: a general assessment of their utility in drug discovery applications. , 2011, Current topics in medicinal chemistry.

[54]  Kwong-Sak Leung,et al.  USR-VS: a web server for large-scale prospective virtual screening using ultrafast shape recognition techniques , 2016, Nucleic Acids Res..

[55]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[56]  R. W. Hansen,et al.  Journal of Health Economics , 2016 .

[57]  Glaucius Oliva,et al.  Integração das técnicas de triagem virtual e triagem biológica automatizada em alta escala: oportunidades e desafios em P&D de fármacos , 2011 .

[58]  Henry S. Rzepa,et al.  A metadata-driven approach to data repository design , 2017, Journal of Cheminformatics.

[59]  Jing Zhao,et al.  Hadoop MapReduce Framework to Implement Molecular Docking of Large-Scale Virtual Screening , 2012, 2012 IEEE Asia-Pacific Services Computing Conference.

[60]  Pedro J. Ballester,et al.  Ultrafast shape recognition for similarity search in molecular databases , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[61]  P. Sprague Automated chemical hypothesis generation and database searching with Catalyst , 1995 .

[62]  Lixia Chen,et al.  Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods , 2020, Acta Pharmaceutica Sinica B.

[63]  Leonardo L. G. Ferreira,et al.  Molecular Docking and Structure-Based Drug Design Strategies , 2015, Molecules.

[64]  R. M. Owen,et al.  An analysis of the attrition of drug candidates from four major pharmaceutical companies , 2015, Nature Reviews Drug Discovery.

[65]  Jamal Shamsara,et al.  CrossDocker: a tool for performing cross-docking using Autodock Vina , 2016, SpringerPlus.

[66]  Prasenjit Mukherjee,et al.  An overview of molecular fingerprint similarity search in virtual screening , 2016, Expert opinion on drug discovery.

[67]  Maryam Hamzeh-Mivehroud,et al.  Applied Case Studies and Solutions in Molecular Docking-Based Drug Design , 2016 .

[68]  N. M. Borges,et al.  Similarity search combined with docking and molecular dynamics for novel hAChE inhibitor scaffolds , 2018, Journal of Molecular Modeling.

[69]  M. Kamal,et al.  Drug Discovery and In Silico Techniques: A Mini-Review , 2014 .

[70]  C. Murray,et al.  Fragment-to-Lead Medicinal Chemistry Publications in 2015. , 2017, Journal of medicinal chemistry.

[71]  G. Schneider,et al.  Shape Similarity by Fractal Dimensionality: An Application in the de novo Design of (−)‐Englerin A Mimetics , 2020, ChemMedChem.

[72]  K. Ahmad,et al.  Computer Aided Drug Design and its Application to the Development of Potential Drugs for Neurodegenerative Disorders , 2017, Current neuropharmacology.

[73]  Carlos J. Camacho,et al.  Optimal affinity ranking for automated virtual screening validated in prospective D3R grand challenges , 2017, Journal of Computer-Aided Molecular Design.

[74]  Fabian Langensiepen,et al.  The Efficiency of Biobased Carbonization Agent and Intumescent Flame Retardant on Flame Retardancy of Biopolymer Composites and Investigation of Their Melt-Spinnability , 2019, Molecules.

[75]  Vassilios Ioannidis,et al.  ExPASy: SIB bioinformatics resource portal , 2012, Nucleic Acids Res..

[76]  Bentley M Wingert,et al.  Cross‐docking benchmark for automated pose and ranking prediction of ligand binding , 2019, Protein science : a publication of the Protein Society.

[77]  I. Muegge PMF scoring revisited. , 2006, Journal of medicinal chemistry.

[78]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[79]  Menghang Xia,et al.  High Throughput Screening , 2014 .

[80]  Olivier Michielin,et al.  SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules , 2017, Scientific Reports.

[81]  Qingliang Li,et al.  Structure-Based Virtual Screening. , 2017, Methods in molecular biology.

[82]  H J Wiggers,et al.  Integration of Ligand‐ and Target‐Based Virtual Screening for the Discovery of Cruzain Inhibitors , 2011, Molecular informatics.

[83]  Pedro J Ballester,et al.  Machine‐learning scoring functions to improve structure‐based binding affinity prediction and virtual screening , 2015, Wiley interdisciplinary reviews. Computational molecular science.

[84]  N. Heinrich,et al.  Computational Chemistry in the Pharmaceutical Industry: From Childhood to Adolescence , 2015, ChemMedChem.

[85]  Sally R. Ellingson,et al.  High-throughput virtual molecular docking: Hadoop implementation of AutoDock4 on a private cloud , 2011, ECMLS '11.

[86]  Jürgen Bajorath,et al.  Evaluation of different virtual screening strategies on the basis of compound sets with characteristic core distributions and dissimilarity relationships , 2019, Journal of Computer-Aided Molecular Design.

[87]  Maria Kontoyianni,et al.  Docking and Virtual Screening in Drug Discovery. , 2017, Methods in molecular biology.

[88]  Maria A Miteva,et al.  A Free Web-Based Protocol to Assist Structure-Based Virtual Screening Experiments , 2019, International journal of molecular sciences.

[89]  Carlos J. Camacho,et al.  Choosing the Optimal Rigid Receptor for Docking and Scoring in the CSAR 2013/2014 Experiment , 2016, J. Chem. Inf. Model..

[90]  Gilles Klopmand,et al.  Concepts and applications of molecular similarity, by Mark A. Johnson and Gerald M. Maggiora, eds., John Wiley & Sons, New York, 1990, 393 pp. Price: $65.00 , 1992 .

[91]  Donald J Abraham,et al.  Structure-based drug design strategies in medicinal chemistry. , 2009, Current topics in medicinal chemistry.

[92]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[93]  Thierry Langer,et al.  Pharmacophores and Pharmacophore Searches: LANGER: PHARMACOPHORES AND PHARMACOPHORE SEARCHES O-BK , 2006 .

[94]  Ricardo P. Rodrigues,et al.  Estratégias de Triagem Virtual no Planejamento de Fármacos , 2012 .

[95]  F. Ledley,et al.  Profitability of Large Pharmaceutical Companies Compared With Other Large Public Companies. , 2020, JAMA.

[96]  Ajay N. Jain,et al.  Recommendations for evaluation of computational methods , 2008, J. Comput. Aided Mol. Des..

[97]  Abdulilah Ece,et al.  The discovery of potential cyclin A/CDK2 inhibitors: a combination of 3D QSAR pharmacophore modeling, virtual screening, and molecular docking studies , 2013, Medicinal Chemistry Research.

[98]  Reynold Xin,et al.  Apache Spark , 2016 .

[99]  Kwang Kim,et al.  Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors , 2011, BMC Bioinformatics.

[100]  Sangdun Choi,et al.  A Structure-Based Drug Discovery Paradigm , 2019, International journal of molecular sciences.

[101]  Cristina Tintori,et al.  Targets Looking for Drugs: A Multistep Computational Protocol for the Development of Structure-Based Pharmacophores and Their Applications for Hit Discovery , 2008, J. Chem. Inf. Model..

[102]  Kam Y. J. Zhang,et al.  Hierarchical virtual screening approaches in small molecule drug discovery , 2014, Methods.

[103]  Cheng Luo,et al.  Computational drug discovery , 2012, Acta Pharmacologica Sinica.

[104]  Yun Shi,et al.  How Size Matters: Diversity for Fragment Library Design , 2019, Molecules.

[105]  Y. Martin,et al.  A bioavailability score. , 2005, Journal of medicinal chemistry.

[106]  John A. Lowe,et al.  A guide to drug discovery: The role of the medicinal chemist in drug discovery — then and now , 2004, Nature Reviews Drug Discovery.

[107]  Ola Spjuth,et al.  Large-scale virtual screening on public cloud resources with Apache Spark , 2017, Journal of Cheminformatics.

[108]  Naiem T. Issa,et al.  Research Techniques Made Simple: Molecular Docking in Dermatology - A Foray into In Silico Drug Discovery. , 2019, The Journal of investigative dermatology.

[109]  Peter Willett,et al.  Similarity-based virtual screening using 2D fingerprints. , 2006, Drug discovery today.

[110]  Brian K. Shoichet,et al.  Virtual screening of chemical libraries , 2004, Nature.

[111]  Horacio Pérez-Sánchez,et al.  Multi-objective evolutionary algorithm for evaluation of shape and electrostatic similarity , 2019 .

[112]  Nandini A. Sahasrabuddhe,et al.  Corrigendum: A dual specificity kinase, DYRK1A, as a potential therapeutic target for head and neck squamous cell carcinoma , 2017, Scientific Reports.

[113]  Ola Spjuth,et al.  Using Iterative MapReduce for Parallel Virtual Screening , 2013, 2013 IEEE 5th International Conference on Cloud Computing Technology and Science.

[114]  Christopher R. Corbeil,et al.  Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go , 2008, British journal of pharmacology.

[115]  Jeffrey Skolnick,et al.  Assessment of programs for ligand binding affinity prediction , 2008, J. Comput. Chem..

[116]  Brent R Stockwell,et al.  Identifying druggable disease-modifying gene products. , 2009, Current opinion in chemical biology.

[117]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[118]  Hannah M Jones,et al.  Predicting pharmacokinetic profiles using in silico derived parameters. , 2013, Molecular pharmaceutics.

[119]  David Ryan Koes,et al.  Lessons Learned in Empirical Scoring with smina from the CSAR 2011 Benchmarking Exercise , 2013, J. Chem. Inf. Model..

[120]  W. L. Jorgensen The Many Roles of Computation in Drug Discovery , 2004, Science.

[121]  Ruth Nussinov,et al.  Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. , 2004, Current medicinal chemistry.

[122]  Sunghwan Kim,et al.  Getting the most out of PubChem for virtual screening , 2016, Expert opinion on drug discovery.

[123]  Fumiyoshi Yamashita,et al.  In silico approaches for predicting ADME properties of drugs. , 2004, Drug metabolism and pharmacokinetics.

[124]  Miklos Feher,et al.  Consensus scoring for protein-ligand interactions. , 2006, Drug discovery today.

[125]  R. Tripathi,et al.  DUSR (Distributed Ultrafast Shape Recognition): a Hadoop Based Tool to Identify Similar Shaped Ligand Molecules , 2017 .

[126]  Gary B. Fogel,et al.  Computational Intelligence Methods for Docking Scores , 2009 .

[127]  W. Guida,et al.  The art and practice of structure‐based drug design: A molecular modeling perspective , 1996, Medicinal research reviews.

[128]  Brian K. Shoichet,et al.  Rapid Context-Dependent Ligand Desolvation in Molecular Docking , 2010, J. Chem. Inf. Model..

[129]  Yanli Wang,et al.  Structure-Based Virtual Screening for Drug Discovery: a Problem-Centric Review , 2012, The AAPS Journal.

[130]  Saeed Alqahtani,et al.  In silico ADME-Tox modeling: progress and prospects , 2017, Expert opinion on drug metabolism & toxicology.

[131]  T. Langer,et al.  Pharmacophore definition and 3D searches. , 2004, Drug discovery today. Technologies.

[132]  David E. Shaw,et al.  PHASE: a new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results , 2006, J. Comput. Aided Mol. Des..

[133]  Amiram Goldblum,et al.  High quality binding modes in docking ligands to proteins , 2008, Proteins.

[134]  C. Dobson Chemical space and biology , 2004, Nature.

[135]  Kwong-Sak Leung,et al.  The Impact of Protein Structure and Sequence Similarity on the Accuracy of Machine-Learning Scoring Functions for Binding Affinity Prediction , 2018, Biomolecules.

[136]  Yu Cao,et al.  Computer-aided drug design: lead discovery and optimization. , 2012, Combinatorial chemistry & high throughput screening.

[137]  Gopal Pawar,et al.  In Silico Toxicology Data Resources to Support Read-Across and (Q)SAR , 2019, Front. Pharmacol..

[138]  Xiubo Chen,et al.  3D QSAR Pharmacophore Based Virtual Screening for Identification of Potential Inhibitors for CDC25B , 2018, Comput. Biol. Chem..

[139]  A Srinivas Reddy,et al.  Virtual screening in drug discovery -- a computational perspective. , 2007, Current protein & peptide science.

[140]  M. Congreve,et al.  A 'rule of three' for fragment-based lead discovery? , 2003, Drug discovery today.

[141]  Nikolay M. Borisov,et al.  Pathway Based Analysis of Mutation Data Is Efficient for Scoring Target Cancer Drugs , 2019, Front. Pharmacol..

[142]  David Schaller,et al.  Next generation 3D pharmacophore modeling , 2020, WIREs Computational Molecular Science.

[143]  Uma Devi Bommu,et al.  Ligand-based virtual screening, molecular docking, QSAR and pharmacophore analysis of quercetin-associated potential novel analogs against epidermal growth factor receptor , 2017, Journal of receptor and signal transduction research.

[144]  Bruno O Villoutreix,et al.  Virtual screening web servers: designing chemical probes and drug candidates in the cyberspace , 2020, Briefings Bioinform..

[145]  J. Ponder,et al.  Force fields for protein simulations. , 2003, Advances in protein chemistry.

[146]  Ajay N. Jain,et al.  Scoring functions for protein-ligand docking. , 2006, Current protein & peptide science.

[147]  A Lavecchia,et al.  Virtual screening strategies in drug discovery: a critical review. , 2013, Current medicinal chemistry.

[148]  Thierry Langer,et al.  Virtual screening for the discovery of bioactive natural products , 2008, Progress in drug research. Fortschritte der Arzneimittelforschung. Progres des recherches pharmaceutiques.

[149]  J. Pin,et al.  Virtual screening workflow development guided by the "receiver operating characteristic" curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. , 2005, Journal of medicinal chemistry.

[150]  Guixia Liu,et al.  Performance Evaluation of 2D Fingerprint and 3D Shape Similarity Methods in Virtual Screening , 2012, J. Chem. Inf. Model..

[151]  Azah Kamilah Muda,et al.  Similarity Measure for Molecular Structure: A Brief Review , 2017 .

[152]  Joo Chuan Tong,et al.  Recent advances in computer-aided drug design , 2009, Briefings Bioinform..

[153]  D. Swinney,et al.  How were new medicines discovered? , 2011, Nature Reviews Drug Discovery.

[154]  Christoph A. Sotriffer,et al.  Virtual screening : principles, challenges, and practical guidelines , 2011 .

[155]  Sanjay Ghemawat,et al.  MapReduce: Simplified Data Processing on Large Clusters , 2004, OSDI.

[156]  Jaap Keijer,et al.  Diet-Independent Correlations between Bacteria and Dysfunction of Gut, Adipose Tissue, and Liver: A Comprehensive Microbiota Analysis in Feces and Mucosa of the Ileum and Colon in Obese Mice with NAFLD , 2018, International journal of molecular sciences.

[157]  Glaucius Oliva,et al.  Planejamento de fármacos, biotecnologia e química medicinal: aplicações em doenças infecciosas , 2010 .

[158]  Paul N. Mortenson,et al.  Fragment-to-Lead Medicinal Chemistry Publications in 2017. , 2018, Journal of medicinal chemistry.

[159]  Jacob D Durrant,et al.  Gypsum-DL: an open-source program for preparing small-molecule libraries for structure-based virtual screening , 2019, Journal of Cheminformatics.

[160]  Keun Woo Lee,et al.  Pharmacophore modeling, virtual screening, molecular docking studies and density functional theory approaches to identify novel ketohexokinase (KHK) inhibitors , 2015, Biosyst..

[161]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[162]  Kunhong Xiao,et al.  Multiple ligand-specific conformations of the β2-adrenergic receptor. , 2011, Nature chemical biology.

[163]  Jiabo Li,et al.  New features that improve the pharmacophore tools from Accelrys. , 2011, Current computer-aided drug design.

[164]  Steffen Möller,et al.  Cloud-Based High Throughput Virtual Screening in Novel Drug Discovery , 2019, High-Performance Modelling and Simulation for Big Data Applications.

[165]  Jens Sadowski,et al.  Virtual Screening in the Cloud: How Big Is Big Enough? , 2020, J. Chem. Inf. Model..

[166]  Jürgen Bajorath,et al.  Molecular similarity analysis in virtual screening: foundations, limitations and novel approaches. , 2007, Drug discovery today.

[167]  Woody Sherman,et al.  Large-Scale Systematic Analysis of 2D Fingerprint Methods and Parameters to Improve Virtual Screening Enrichments , 2010, J. Chem. Inf. Model..

[168]  Sheng-Yong Yang,et al.  Pharmacophore modeling and applications in drug discovery: challenges and recent advances. , 2010, Drug discovery today.

[169]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[170]  Hong-Can Ren,et al.  Evaluation of Generic Methods to Predict Human Pharmacokinetics Using Physiologically Based Pharmacokinetic Model for Early Drug Discovery of Tyrosine Kinase Inhibitors , 2018, European Journal of Drug Metabolism and Pharmacokinetics.

[171]  Alice McCarthy Drug discovery in the clouds. , 2012, Chemistry & biology.

[172]  James Inglese,et al.  High Throughput Screening (HTS) Techniques: Applications in Chemical Biology , 2008 .

[173]  Subha Kalyaanamoorthy,et al.  Modelling and enhanced molecular dynamics to steer structure-based drug discovery. , 2014, Progress in biophysics and molecular biology.

[174]  Marvin Johnson,et al.  Concepts and applications of molecular similarity , 1990 .

[175]  F. Lombardo,et al.  Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings , 1997 .

[176]  Anthony Nicholls,et al.  Conformer Generation with OMEGA: Learning from the Data Set and the Analysis of Failures , 2012, J. Chem. Inf. Model..

[177]  Garrett M. Morris,et al.  Shape‐based similarity searching in chemical databases , 2013 .

[178]  L. Dardenne,et al.  Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges , 2018, Front. Pharmacol..

[179]  Magdalena Bacilieri,et al.  Ligand-based drug design methodologies in drug discovery process: an overview. , 2006, Current drug discovery technologies.

[180]  Adrià Cereto-Massagué,et al.  DecoyFinder: an easy-to-use python GUI application for building target-specific decoy sets , 2012, Bioinform..

[181]  Ray M. Marín,et al.  Graph Theoretical Similarity Approach To Compare Molecular Electrostatic Potentials , 2008, J. Chem. Inf. Model..

[182]  Rui M. M. Brito,et al.  Toward the Discovery of Functional Transthyretin Amyloid Inhibitors: Application of Virtual Screening Methods , 2010, J. Chem. Inf. Model..

[183]  S. Hill,et al.  Comparison of Sales Income and Research and Development Costs for FDA-Approved Cancer Drugs Sold by Originator Drug Companies , 2019, JAMA network open.