Point2Pix: Photo-Realistic Point Cloud Rendering via Neural Radiance Fields

Synthesizing photo-realistic images from a point cloud is challenging because of the sparsity of point cloud representation. Recent Neural Radiance Fields and extensions are proposed to synthesize realistic images from 2D input. In this paper, we present Point2Pix as a novel point renderer to link the 3D sparse point clouds with 2D dense image pixels. Taking advantage of the point cloud 3D prior and NeRF rendering pipeline, our method can synthesize high-quality images from colored point clouds, generally for novel indoor scenes. To improve the efficiency of ray sampling, we propose point-guided sampling, which focuses on valid samples. Also, we present Point Encoding to build Multi-scale Radiance Fields that provide discriminative 3D point features. Finally, we propose Fusion Encoding to efficiently synthesize high-quality images. Extensive experiments on the ScanNet and ArkitScenes datasets demonstrate the effectiveness and generalization.

[1]  U. Neumann,et al.  Point-NeRF: Point-based Neural Radiance Fields , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  T. Müller,et al.  Instant neural graphics primitives with a multiresolution hash encoding , 2022, ACM Trans. Graph..

[3]  B. Ommer,et al.  High-Resolution Image Synthesis with Latent Diffusion Models , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Ligang Liu,et al.  HeadNeRF: A Realtime NeRF-based Parametric Head Model , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[5]  Benjamin Recht,et al.  Plenoxels: Radiance Fields without Neural Networks , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[6]  Afshin Dehghan,et al.  ARKitScenes: A Diverse Real-World Dataset For 3D Indoor Scene Understanding Using Mobile RGB-D Data , 2021, NeurIPS Datasets and Benchmarks.

[7]  Bingbing Ni,et al.  CIPS-3D: A 3D-Aware Generator of GANs Based on Conditionally-Independent Pixel Synthesis , 2021, ArXiv.

[8]  Christian Theobalt,et al.  StyleNeRF: A Style-based 3D-Aware Generator for High-resolution Image Synthesis , 2021, ICLR.

[9]  M. Stamminger,et al.  ADOP , 2021, ACM Trans. Graph..

[10]  Tao Kong,et al.  ICM-3D: Instantiated Category Modeling for 3D Instance Segmentation , 2021, IEEE Robotics and Automation Letters.

[11]  D. Ramanan,et al.  Depth-supervised NeRF: Fewer Views and Faster Training for Free , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[12]  Huchuan Lu,et al.  Animatable Neural Radiance Fields from Monocular RGB Video , 2021, ArXiv.

[13]  Christian Theobalt,et al.  Neural actor , 2021, ACM Trans. Graph..

[14]  Dan B. Goldman,et al.  Neural RGB-D Surface Reconstruction , 2021, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[15]  Hao Su,et al.  MVSNeRF: Fast Generalizable Radiance Field Reconstruction from Multi-View Stereo , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[16]  Ren Ng,et al.  PlenOctrees for Real-time Rendering of Neural Radiance Fields , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[17]  C. R. A. Chaitanya,et al.  DONeRF: Towards Real‐Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks , 2021, Comput. Graph. Forum.

[18]  Pratul P. Srinivasan,et al.  IBRNet: Learning Multi-View Image-Based Rendering , 2021, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  V. Prisacariu,et al.  NeRF--: Neural Radiance Fields Without Known Camera Parameters , 2021, 2102.07064.

[20]  Hujun Bao,et al.  Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[21]  Jonathan T. Barron,et al.  Nerfies: Deformable Neural Radiance Fields , 2020, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[22]  Andreas Geiger,et al.  GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Kai Zhang,et al.  NeRF++: Analyzing and Improving Neural Radiance Fields , 2020, ArXiv.

[24]  Kyaw Zaw Lin,et al.  Neural Sparse Voxel Fields , 2020, NeurIPS.

[25]  Pratul P. Srinivasan,et al.  NeRF , 2020, ECCV.

[26]  Yinda Zhang,et al.  Neural Point Cloud Rendering via Multi-Plane Projection , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Wan-Yen Lo,et al.  Accelerating 3D deep learning with PyTorch3D , 2019, SIGGRAPH Asia 2020 Courses.

[28]  Silvio Savarese,et al.  4D Spatio-Temporal ConvNets: Minkowski Convolutional Neural Networks , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Taesung Park,et al.  Semantic Image Synthesis With Spatially-Adaptive Normalization , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Timo Ropinski,et al.  Monte Carlo convolution for learning on non-uniformly sampled point clouds , 2018, ACM Trans. Graph..

[31]  Long Quan,et al.  MVSNet: Depth Inference for Unstructured Multi-view Stereo , 2018, ECCV.

[32]  Subhransu Maji,et al.  SPLATNet: Sparse Lattice Networks for Point Cloud Processing , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[33]  Vladlen Koltun,et al.  Open3D: A Modern Library for 3D Data Processing , 2018, ArXiv.

[34]  Alexei A. Efros,et al.  The Unreasonable Effectiveness of Deep Features as a Perceptual Metric , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[35]  Jan Kautz,et al.  High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[36]  Frank Hutter,et al.  Decoupled Weight Decay Regularization , 2017, ICLR.

[37]  Leonidas J. Guibas,et al.  PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space , 2017, NIPS.

[38]  Laurens van der Maaten,et al.  Submanifold Sparse Convolutional Networks , 2017, ArXiv.

[39]  Matthias Nießner,et al.  ScanNet: Richly-Annotated 3D Reconstructions of Indoor Scenes , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[40]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Yannick Hold-Geoffroy,et al.  Deep Outdoor Illumination Estimation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[42]  Daniel Rueckert,et al.  Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[43]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[44]  Ben Graham,et al.  Sparse 3D convolutional neural networks , 2015, BMVC.

[45]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[46]  Radu Bogdan Rusu,et al.  3D is here: Point Cloud Library (PCL) , 2011, 2011 IEEE International Conference on Robotics and Automation.

[47]  Steven M. Seitz,et al.  Photo tourism: exploring photo collections in 3D , 2006, ACM Trans. Graph..

[48]  Steven M. Seitz,et al.  Shape and Spatially-Varying BRDFs from Photometric Stereo , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[50]  Yizhou Yu,et al.  Efficient View-Dependent Image-Based Rendering with Projective Texture-Mapping , 1998, Rendering Techniques.

[51]  Nelson L. Max,et al.  Optical Models for Direct Volume Rendering , 1995, IEEE Trans. Vis. Comput. Graph..

[52]  Tom Davis,et al.  Opengl programming guide: the official guide to learning opengl , 1993 .